{"title":"数据分割的最佳比例","authors":"V. R. Joseph","doi":"10.1002/sam.11583","DOIUrl":null,"url":null,"abstract":"It is common to split a dataset into training and testing sets before fitting a statistical or machine learning model. However, there is no clear guidance on how much data should be used for training and testing. In this article, we show that the optimal training/testing splitting ratio is p:1$$ \\sqrt{p}:1 $$ , where p$$ p $$ is the number of parameters in a linear regression model that explains the data well.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"129","resultStr":"{\"title\":\"Optimal ratio for data splitting\",\"authors\":\"V. R. Joseph\",\"doi\":\"10.1002/sam.11583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is common to split a dataset into training and testing sets before fitting a statistical or machine learning model. However, there is no clear guidance on how much data should be used for training and testing. In this article, we show that the optimal training/testing splitting ratio is p:1$$ \\\\sqrt{p}:1 $$ , where p$$ p $$ is the number of parameters in a linear regression model that explains the data well.\",\"PeriodicalId\":342679,\"journal\":{\"name\":\"Statistical Analysis and Data Mining: The ASA Data Science Journal\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"129\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Analysis and Data Mining: The ASA Data Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sam.11583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 129
摘要
在拟合统计或机器学习模型之前,将数据集分成训练集和测试集是很常见的。然而,对于应该使用多少数据进行培训和测试,并没有明确的指导。在本文中,我们展示了最优的训练/测试分割比是p:1 $$ \sqrt{p}:1 $$,其中p $$ p $$是线性回归模型中能够很好地解释数据的参数数量。
It is common to split a dataset into training and testing sets before fitting a statistical or machine learning model. However, there is no clear guidance on how much data should be used for training and testing. In this article, we show that the optimal training/testing splitting ratio is p:1$$ \sqrt{p}:1 $$ , where p$$ p $$ is the number of parameters in a linear regression model that explains the data well.