数据分割的最佳比例

V. R. Joseph
{"title":"数据分割的最佳比例","authors":"V. R. Joseph","doi":"10.1002/sam.11583","DOIUrl":null,"url":null,"abstract":"It is common to split a dataset into training and testing sets before fitting a statistical or machine learning model. However, there is no clear guidance on how much data should be used for training and testing. In this article, we show that the optimal training/testing splitting ratio is p:1$$ \\sqrt{p}:1 $$ , where p$$ p $$ is the number of parameters in a linear regression model that explains the data well.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"129","resultStr":"{\"title\":\"Optimal ratio for data splitting\",\"authors\":\"V. R. Joseph\",\"doi\":\"10.1002/sam.11583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is common to split a dataset into training and testing sets before fitting a statistical or machine learning model. However, there is no clear guidance on how much data should be used for training and testing. In this article, we show that the optimal training/testing splitting ratio is p:1$$ \\\\sqrt{p}:1 $$ , where p$$ p $$ is the number of parameters in a linear regression model that explains the data well.\",\"PeriodicalId\":342679,\"journal\":{\"name\":\"Statistical Analysis and Data Mining: The ASA Data Science Journal\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"129\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Analysis and Data Mining: The ASA Data Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sam.11583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 129

摘要

在拟合统计或机器学习模型之前,将数据集分成训练集和测试集是很常见的。然而,对于应该使用多少数据进行培训和测试,并没有明确的指导。在本文中,我们展示了最优的训练/测试分割比是p:1 $$ \sqrt{p}:1 $$,其中p $$ p $$是线性回归模型中能够很好地解释数据的参数数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal ratio for data splitting
It is common to split a dataset into training and testing sets before fitting a statistical or machine learning model. However, there is no clear guidance on how much data should be used for training and testing. In this article, we show that the optimal training/testing splitting ratio is p:1$$ \sqrt{p}:1 $$ , where p$$ p $$ is the number of parameters in a linear regression model that explains the data well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信