Kortany E. McCauley, Alissa A. Schroeder, Tawney K. DeBoth, Alexander M. Wiebe, Christopher L Bosley, D. Ballweg, Jennifer L. Fang
{"title":"减轻四级新生儿重症监护病房的报警负担","authors":"Kortany E. McCauley, Alissa A. Schroeder, Tawney K. DeBoth, Alexander M. Wiebe, Christopher L Bosley, D. Ballweg, Jennifer L. Fang","doi":"10.1097/pq9.0000000000000386","DOIUrl":null,"url":null,"abstract":"Introduction: Excessive alarm burden contributes to alarm fatigue, causing staff to ignore or delay response to clinically significant alarms. The objective of this quality improvement project was to reduce yellow self-resolving SpO2 alarms from a mean of 14 alarms/patient-hour (APH) to 7 APH (a 50% reduction) within a 6-month period, without significantly decreasing the amount of time spent in target SpO2 range (90%–95%). Methods: A multidisciplinary team used Define-Measure-Analyze-Improve-Control methodology to identify etiologies of alarm frequency and design improvement interventions to reduce alarm burden in a single-site Level IV NICU. Data-driven changes in alarm limit settings, alarm delay, and trial of a new pulse oximeter probe were used. Alarm data from the bedside monitor were analyzed following each improvement cycle. As a balancing measure, histograms monitored time spent in target SpO2 range. Results: SpO2 alarm data were collected for 4,320 patient-hours (180 patient-days) on 40 neonatal intensive care unit patients meeting inclusion criteria. Corresponding histograms were obtained for each patient day. Following 5 Plan-Do-Study-Act cycles, the mean number of yellow self-resolving SpO2 alarms decreased from 14 to 5 APH, a 64% decrease. There was no difference in time spent in target SpO2 range (50% versus 50%, P = 0.93). After achieving the project aim, 2 control phase measurements demonstrated sustained improvement (mean APH = 6). Conclusions: Yellow self-resolving SpO2 alarm frequency was reduced by 64% through the implementation of data-driven changes in alarm limit settings, alarm delays, and trial of a more sensitive oximeter probe without introducing harm to patients.","PeriodicalId":343243,"journal":{"name":"Pediatric Quality and Safety","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reducing Alarm Burden in a Level IV Neonatal Intensive Care Unit\",\"authors\":\"Kortany E. McCauley, Alissa A. Schroeder, Tawney K. DeBoth, Alexander M. Wiebe, Christopher L Bosley, D. Ballweg, Jennifer L. Fang\",\"doi\":\"10.1097/pq9.0000000000000386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Excessive alarm burden contributes to alarm fatigue, causing staff to ignore or delay response to clinically significant alarms. The objective of this quality improvement project was to reduce yellow self-resolving SpO2 alarms from a mean of 14 alarms/patient-hour (APH) to 7 APH (a 50% reduction) within a 6-month period, without significantly decreasing the amount of time spent in target SpO2 range (90%–95%). Methods: A multidisciplinary team used Define-Measure-Analyze-Improve-Control methodology to identify etiologies of alarm frequency and design improvement interventions to reduce alarm burden in a single-site Level IV NICU. Data-driven changes in alarm limit settings, alarm delay, and trial of a new pulse oximeter probe were used. Alarm data from the bedside monitor were analyzed following each improvement cycle. As a balancing measure, histograms monitored time spent in target SpO2 range. Results: SpO2 alarm data were collected for 4,320 patient-hours (180 patient-days) on 40 neonatal intensive care unit patients meeting inclusion criteria. Corresponding histograms were obtained for each patient day. Following 5 Plan-Do-Study-Act cycles, the mean number of yellow self-resolving SpO2 alarms decreased from 14 to 5 APH, a 64% decrease. There was no difference in time spent in target SpO2 range (50% versus 50%, P = 0.93). After achieving the project aim, 2 control phase measurements demonstrated sustained improvement (mean APH = 6). Conclusions: Yellow self-resolving SpO2 alarm frequency was reduced by 64% through the implementation of data-driven changes in alarm limit settings, alarm delays, and trial of a more sensitive oximeter probe without introducing harm to patients.\",\"PeriodicalId\":343243,\"journal\":{\"name\":\"Pediatric Quality and Safety\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pediatric Quality and Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1097/pq9.0000000000000386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pediatric Quality and Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/pq9.0000000000000386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reducing Alarm Burden in a Level IV Neonatal Intensive Care Unit
Introduction: Excessive alarm burden contributes to alarm fatigue, causing staff to ignore or delay response to clinically significant alarms. The objective of this quality improvement project was to reduce yellow self-resolving SpO2 alarms from a mean of 14 alarms/patient-hour (APH) to 7 APH (a 50% reduction) within a 6-month period, without significantly decreasing the amount of time spent in target SpO2 range (90%–95%). Methods: A multidisciplinary team used Define-Measure-Analyze-Improve-Control methodology to identify etiologies of alarm frequency and design improvement interventions to reduce alarm burden in a single-site Level IV NICU. Data-driven changes in alarm limit settings, alarm delay, and trial of a new pulse oximeter probe were used. Alarm data from the bedside monitor were analyzed following each improvement cycle. As a balancing measure, histograms monitored time spent in target SpO2 range. Results: SpO2 alarm data were collected for 4,320 patient-hours (180 patient-days) on 40 neonatal intensive care unit patients meeting inclusion criteria. Corresponding histograms were obtained for each patient day. Following 5 Plan-Do-Study-Act cycles, the mean number of yellow self-resolving SpO2 alarms decreased from 14 to 5 APH, a 64% decrease. There was no difference in time spent in target SpO2 range (50% versus 50%, P = 0.93). After achieving the project aim, 2 control phase measurements demonstrated sustained improvement (mean APH = 6). Conclusions: Yellow self-resolving SpO2 alarm frequency was reduced by 64% through the implementation of data-driven changes in alarm limit settings, alarm delays, and trial of a more sensitive oximeter probe without introducing harm to patients.