Ward Ruitenbeek, Victor Zwart, Robin Van Der Noord, Zhenja Gnezdilov, T. Caselli
{"title":"“Zo Grof !”:荷兰语侮辱性语言综合语料库","authors":"Ward Ruitenbeek, Victor Zwart, Robin Van Der Noord, Zhenja Gnezdilov, T. Caselli","doi":"10.18653/v1/2022.woah-1.5","DOIUrl":null,"url":null,"abstract":"This paper presents a comprehensive corpus for the study of socially unacceptable language in Dutch. The corpus extends and revise an existing resource with more data and introduces a new annotation dimension for offensive language, making it a unique resource in the Dutch language panorama. Each language phenomenon (abusive and offensive language) in the corpus has been annotated with a multi-layer annotation scheme modelling the explicitness and the target(s) of the message. We have conducted a new set of experiments with different classification algorithms on all annotation dimensions. Monolingual Pre-Trained Language Models prove as the best systems, obtaining a macro-average F1 of 0.828 for binary classification of offensive language, and 0.579 for the targets of offensive messages. Furthermore, the best system obtains a macro-average F1 of 0.667 for distinguishing between abusive and offensive messages.","PeriodicalId":440731,"journal":{"name":"Proceedings of the Sixth Workshop on Online Abuse and Harms (WOAH)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"“Zo Grof !”: A Comprehensive Corpus for Offensive and Abusive Language in Dutch\",\"authors\":\"Ward Ruitenbeek, Victor Zwart, Robin Van Der Noord, Zhenja Gnezdilov, T. Caselli\",\"doi\":\"10.18653/v1/2022.woah-1.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a comprehensive corpus for the study of socially unacceptable language in Dutch. The corpus extends and revise an existing resource with more data and introduces a new annotation dimension for offensive language, making it a unique resource in the Dutch language panorama. Each language phenomenon (abusive and offensive language) in the corpus has been annotated with a multi-layer annotation scheme modelling the explicitness and the target(s) of the message. We have conducted a new set of experiments with different classification algorithms on all annotation dimensions. Monolingual Pre-Trained Language Models prove as the best systems, obtaining a macro-average F1 of 0.828 for binary classification of offensive language, and 0.579 for the targets of offensive messages. Furthermore, the best system obtains a macro-average F1 of 0.667 for distinguishing between abusive and offensive messages.\",\"PeriodicalId\":440731,\"journal\":{\"name\":\"Proceedings of the Sixth Workshop on Online Abuse and Harms (WOAH)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixth Workshop on Online Abuse and Harms (WOAH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.woah-1.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth Workshop on Online Abuse and Harms (WOAH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.woah-1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
“Zo Grof !”: A Comprehensive Corpus for Offensive and Abusive Language in Dutch
This paper presents a comprehensive corpus for the study of socially unacceptable language in Dutch. The corpus extends and revise an existing resource with more data and introduces a new annotation dimension for offensive language, making it a unique resource in the Dutch language panorama. Each language phenomenon (abusive and offensive language) in the corpus has been annotated with a multi-layer annotation scheme modelling the explicitness and the target(s) of the message. We have conducted a new set of experiments with different classification algorithms on all annotation dimensions. Monolingual Pre-Trained Language Models prove as the best systems, obtaining a macro-average F1 of 0.828 for binary classification of offensive language, and 0.579 for the targets of offensive messages. Furthermore, the best system obtains a macro-average F1 of 0.667 for distinguishing between abusive and offensive messages.