{"title":"基于LSTM-RNN的力传感器信号实时处理","authors":"Qiao Liu, Yu Dai, Mengwen Li, Bin Yao, Yunwei Xin, Jianxun Zhang","doi":"10.1109/ROBIO55434.2022.10011703","DOIUrl":null,"url":null,"abstract":"Multi-dimensional force sensors are of great significance to improve the perception of robots. It's very important to remove the drift and noise of the multi-dimensional force sensor signal caused by environmental changes. Recurrent Neural Network based on Long-Short Term Memory (LSTM-RNN) is proposed for real-time signal processing of multi-dimensional force sensors. Firstly, Adaptive Empirical Mode Decomposition (AEMD) is verified to be effective in removing drift and noise from multi-dimensional force sensor signals. Then, AEMD is utilized to process the force sensor signal and LSTM-RNN is trained by the processed signal. In the force test experiment, the errors of different signals processed by LSTM-RNN are very small and smaller than those of RNN signal processing, which proves that the trained LSTM-RNN can effectively process multi-dimensional force sensor signals in real time.","PeriodicalId":151112,"journal":{"name":"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Real-time processing of force sensor signals based on LSTM-RNN\",\"authors\":\"Qiao Liu, Yu Dai, Mengwen Li, Bin Yao, Yunwei Xin, Jianxun Zhang\",\"doi\":\"10.1109/ROBIO55434.2022.10011703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-dimensional force sensors are of great significance to improve the perception of robots. It's very important to remove the drift and noise of the multi-dimensional force sensor signal caused by environmental changes. Recurrent Neural Network based on Long-Short Term Memory (LSTM-RNN) is proposed for real-time signal processing of multi-dimensional force sensors. Firstly, Adaptive Empirical Mode Decomposition (AEMD) is verified to be effective in removing drift and noise from multi-dimensional force sensor signals. Then, AEMD is utilized to process the force sensor signal and LSTM-RNN is trained by the processed signal. In the force test experiment, the errors of different signals processed by LSTM-RNN are very small and smaller than those of RNN signal processing, which proves that the trained LSTM-RNN can effectively process multi-dimensional force sensor signals in real time.\",\"PeriodicalId\":151112,\"journal\":{\"name\":\"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO55434.2022.10011703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO55434.2022.10011703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-time processing of force sensor signals based on LSTM-RNN
Multi-dimensional force sensors are of great significance to improve the perception of robots. It's very important to remove the drift and noise of the multi-dimensional force sensor signal caused by environmental changes. Recurrent Neural Network based on Long-Short Term Memory (LSTM-RNN) is proposed for real-time signal processing of multi-dimensional force sensors. Firstly, Adaptive Empirical Mode Decomposition (AEMD) is verified to be effective in removing drift and noise from multi-dimensional force sensor signals. Then, AEMD is utilized to process the force sensor signal and LSTM-RNN is trained by the processed signal. In the force test experiment, the errors of different signals processed by LSTM-RNN are very small and smaller than those of RNN signal processing, which proves that the trained LSTM-RNN can effectively process multi-dimensional force sensor signals in real time.