基于数据的可能性参数推理的一般理论

D. Hose, M. Hanss
{"title":"基于数据的可能性参数推理的一般理论","authors":"D. Hose, M. Hanss","doi":"10.7712/120219.6329.18389","DOIUrl":null,"url":null,"abstract":"This paper unifies several recent results from possibilistic uncertainty analysis in order to contribute to a general theory of possibilistic parameter estimation by providing an exemplary procedure to estimating possibilistic distributions of model parameters from samples of an aggregated output quantity. This task is accomplished by dividing the problem in two subproblems. In the first step, the output samples are represented in a structured manner by a possibility distribution. The second step deals with the backpropagation of the output distribution through a model, thus arriving at a distribution of the input quantity to be estimated. The theoretical basis for this two-step scheme lies in the theory of imprecise probabilities, giving the computed distributions an immediate and meaningful interpretation. It is intended to provoke the development of a novel theory complementary to classical statistics.","PeriodicalId":153829,"journal":{"name":"Proceedings of the 3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP 2019)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"TOWARDS A GENERAL THEORY FOR DATA-BASED POSSIBILISTIC PARAMETER INFERENCE\",\"authors\":\"D. Hose, M. Hanss\",\"doi\":\"10.7712/120219.6329.18389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper unifies several recent results from possibilistic uncertainty analysis in order to contribute to a general theory of possibilistic parameter estimation by providing an exemplary procedure to estimating possibilistic distributions of model parameters from samples of an aggregated output quantity. This task is accomplished by dividing the problem in two subproblems. In the first step, the output samples are represented in a structured manner by a possibility distribution. The second step deals with the backpropagation of the output distribution through a model, thus arriving at a distribution of the input quantity to be estimated. The theoretical basis for this two-step scheme lies in the theory of imprecise probabilities, giving the computed distributions an immediate and meaningful interpretation. It is intended to provoke the development of a novel theory complementary to classical statistics.\",\"PeriodicalId\":153829,\"journal\":{\"name\":\"Proceedings of the 3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP 2019)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7712/120219.6329.18389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7712/120219.6329.18389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文通过提供一个从一个总输出量的样本中估计模型参数的可能性分布的示例程序,将最近的几个可能性不确定性分析结果统一起来,以促进可能性参数估计的一般理论。该任务通过将问题分成两个子问题来完成。在第一步中,输出样本通过可能性分布以结构化的方式表示。第二步通过模型处理输出分布的反向传播,从而得到待估计输入量的分布。这种两步方案的理论基础是不精确概率理论,它给计算出的分布一个直接而有意义的解释。它的目的是激发一种新的理论的发展,以补充经典统计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TOWARDS A GENERAL THEORY FOR DATA-BASED POSSIBILISTIC PARAMETER INFERENCE
This paper unifies several recent results from possibilistic uncertainty analysis in order to contribute to a general theory of possibilistic parameter estimation by providing an exemplary procedure to estimating possibilistic distributions of model parameters from samples of an aggregated output quantity. This task is accomplished by dividing the problem in two subproblems. In the first step, the output samples are represented in a structured manner by a possibility distribution. The second step deals with the backpropagation of the output distribution through a model, thus arriving at a distribution of the input quantity to be estimated. The theoretical basis for this two-step scheme lies in the theory of imprecise probabilities, giving the computed distributions an immediate and meaningful interpretation. It is intended to provoke the development of a novel theory complementary to classical statistics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信