基于混合神经网络的智能传感器Hammerstein模型辨识

X. Wu, Limin Zha
{"title":"基于混合神经网络的智能传感器Hammerstein模型辨识","authors":"X. Wu, Limin Zha","doi":"10.1109/ISIP.2008.42","DOIUrl":null,"url":null,"abstract":"An identification method based on hybrid neural networks for Hammerstein model is investigated in this paper to analyze the nonlinear dynamic system of intelligence sensor, and the corresponding algorithm is presented. In this model, the nonlinear dynamic characteristic of sensor is expressed by cascading a nonlinear static subunit (NLSS) with a linear dynamic subunit (LDS). According to the characteristic of the model, a PID nonlinear neural network (PID-NLNN) simulating the NLSS and a LDN linear neural network (LDN-LNN) simulating the LDS form a hybrid neural network (HNN), which is used to identify Hammerstein model. By means of the HNN approach, the parameter of the model can be identified and separated into two parts simultaneously, one part is the coefficient of the NLSS, the other is the coefficient of the LDS. The simulation has proved the efficiency of the proposed method.","PeriodicalId":103284,"journal":{"name":"2008 International Symposiums on Information Processing","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of Hammerstein Model of Intelligence Sensor Based on Hybrid Neural Networks\",\"authors\":\"X. Wu, Limin Zha\",\"doi\":\"10.1109/ISIP.2008.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An identification method based on hybrid neural networks for Hammerstein model is investigated in this paper to analyze the nonlinear dynamic system of intelligence sensor, and the corresponding algorithm is presented. In this model, the nonlinear dynamic characteristic of sensor is expressed by cascading a nonlinear static subunit (NLSS) with a linear dynamic subunit (LDS). According to the characteristic of the model, a PID nonlinear neural network (PID-NLNN) simulating the NLSS and a LDN linear neural network (LDN-LNN) simulating the LDS form a hybrid neural network (HNN), which is used to identify Hammerstein model. By means of the HNN approach, the parameter of the model can be identified and separated into two parts simultaneously, one part is the coefficient of the NLSS, the other is the coefficient of the LDS. The simulation has proved the efficiency of the proposed method.\",\"PeriodicalId\":103284,\"journal\":{\"name\":\"2008 International Symposiums on Information Processing\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Symposiums on Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIP.2008.42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposiums on Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIP.2008.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对智能传感器非线性动态系统,研究了基于混合神经网络的Hammerstein模型辨识方法,并给出了相应的算法。在该模型中,传感器的非线性动态特性通过非线性静态子单元(NLSS)与线性动态子单元(LDS)级联来表达。根据模型的特点,仿真NLSS的PID非线性神经网络(PID- nlnn)和仿真LDS的LDN线性神经网络(LDN- lnn)组成混合神经网络(HNN),用于Hammerstein模型的辨识。利用HNN方法,可以将模型的参数同时识别并分离为两部分,一部分是NLSS的系数,另一部分是LDS的系数。仿真结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of Hammerstein Model of Intelligence Sensor Based on Hybrid Neural Networks
An identification method based on hybrid neural networks for Hammerstein model is investigated in this paper to analyze the nonlinear dynamic system of intelligence sensor, and the corresponding algorithm is presented. In this model, the nonlinear dynamic characteristic of sensor is expressed by cascading a nonlinear static subunit (NLSS) with a linear dynamic subunit (LDS). According to the characteristic of the model, a PID nonlinear neural network (PID-NLNN) simulating the NLSS and a LDN linear neural network (LDN-LNN) simulating the LDS form a hybrid neural network (HNN), which is used to identify Hammerstein model. By means of the HNN approach, the parameter of the model can be identified and separated into two parts simultaneously, one part is the coefficient of the NLSS, the other is the coefficient of the LDS. The simulation has proved the efficiency of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信