复杂空间RGB-D数据融合

Ziyun Cai, Ling Shao
{"title":"复杂空间RGB-D数据融合","authors":"Ziyun Cai, Ling Shao","doi":"10.1109/ICIP.2017.8296625","DOIUrl":null,"url":null,"abstract":"Most of the RGB-D fusion methods extract features from RGB data and depth data separately and then simply concatenate them or encode these two kinds of features. Such frameworks cannot explore the correlation between the RGB pixels and their corresponding depth pixels. Motivated by the physical concept that range data correspond to the phase change and color information corresponds to the intensity, we first project raw RGB-D data into a complex space and then jointly extract features from the fused RGB-D images. Consequently, the correlated and individual parts of the RGB-D information in the new feature space are well combined. Experimental results of SIFT and fused images trained CNNs on two RGB-D datasets show that our proposed RGB-D fusion method can achieve competing performance against the classical fusion methods.","PeriodicalId":229602,"journal":{"name":"2017 IEEE International Conference on Image Processing (ICIP)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"RGB-D data fusion in complex space\",\"authors\":\"Ziyun Cai, Ling Shao\",\"doi\":\"10.1109/ICIP.2017.8296625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the RGB-D fusion methods extract features from RGB data and depth data separately and then simply concatenate them or encode these two kinds of features. Such frameworks cannot explore the correlation between the RGB pixels and their corresponding depth pixels. Motivated by the physical concept that range data correspond to the phase change and color information corresponds to the intensity, we first project raw RGB-D data into a complex space and then jointly extract features from the fused RGB-D images. Consequently, the correlated and individual parts of the RGB-D information in the new feature space are well combined. Experimental results of SIFT and fused images trained CNNs on two RGB-D datasets show that our proposed RGB-D fusion method can achieve competing performance against the classical fusion methods.\",\"PeriodicalId\":229602,\"journal\":{\"name\":\"2017 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2017.8296625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2017.8296625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

大多数RGB- d融合方法分别从RGB数据和深度数据中提取特征,然后简单地将这两种特征拼接或编码。这样的框架不能探索RGB像素和它们对应的深度像素之间的相关性。基于距离数据对应相位变化,颜色信息对应强度的物理概念,我们首先将原始RGB-D数据投影到复空间中,然后从融合后的RGB-D图像中联合提取特征。因此,在新的特征空间中,RGB-D信息的相关部分和单独部分被很好地结合在一起。在两个RGB-D数据集上的SIFT和融合图像训练cnn的实验结果表明,我们提出的RGB-D融合方法可以达到与经典融合方法相媲美的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RGB-D data fusion in complex space
Most of the RGB-D fusion methods extract features from RGB data and depth data separately and then simply concatenate them or encode these two kinds of features. Such frameworks cannot explore the correlation between the RGB pixels and their corresponding depth pixels. Motivated by the physical concept that range data correspond to the phase change and color information corresponds to the intensity, we first project raw RGB-D data into a complex space and then jointly extract features from the fused RGB-D images. Consequently, the correlated and individual parts of the RGB-D information in the new feature space are well combined. Experimental results of SIFT and fused images trained CNNs on two RGB-D datasets show that our proposed RGB-D fusion method can achieve competing performance against the classical fusion methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信