二维区间型-2模糊集的类型约简技术

Vaibhav Saxena, Nikhil Yadala, R. Chourasia, F. Rhee
{"title":"二维区间型-2模糊集的类型约简技术","authors":"Vaibhav Saxena, Nikhil Yadala, R. Chourasia, F. Rhee","doi":"10.1109/FUZZ-IEEE.2017.8015724","DOIUrl":null,"url":null,"abstract":"In this paper, we address the issue of type reduction of multi-dimensional interval type-2 (IT2) fuzzy sets (FSs). We utilize the Karnik-Mendel (KM) algorithm to estimate the centroid boundary of a multi-dimensional footprint of uncertainty (FOU). We deal with two-dimensional (2-D) fuzzy sets as we can visualize the FOU using 3-D plots, thus making the illustration of the methods simple. However, the basic idea can be extended to multiple dimensions. We give a formal definition of the centroid boundary of a 2-D IT2 fuzzy membership function (FMF) and propose two methods for its estimation. The first method computes embedded type-1 (T1) FSs whose centroids constitute the centroid boundary. We obtain the embedded sets by producing slices of the domain using different sets of parallel planes and then apply the KM algorithm over each slice, to obtain “embedded-curves.” For the second method, we approximate our first method by restricting embedded-curves to be “embedded-lines” thus enhancing computational speed. These type reduction techniques can be applied to applications involving multi-dimensional centroid estimation such as, clustering, support vector estimation for dimensionality reduction, fuzzy logic controllers, to mention a few.","PeriodicalId":408343,"journal":{"name":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Type reduction techniques for two-dimensional interval type-2 fuzzy sets\",\"authors\":\"Vaibhav Saxena, Nikhil Yadala, R. Chourasia, F. Rhee\",\"doi\":\"10.1109/FUZZ-IEEE.2017.8015724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the issue of type reduction of multi-dimensional interval type-2 (IT2) fuzzy sets (FSs). We utilize the Karnik-Mendel (KM) algorithm to estimate the centroid boundary of a multi-dimensional footprint of uncertainty (FOU). We deal with two-dimensional (2-D) fuzzy sets as we can visualize the FOU using 3-D plots, thus making the illustration of the methods simple. However, the basic idea can be extended to multiple dimensions. We give a formal definition of the centroid boundary of a 2-D IT2 fuzzy membership function (FMF) and propose two methods for its estimation. The first method computes embedded type-1 (T1) FSs whose centroids constitute the centroid boundary. We obtain the embedded sets by producing slices of the domain using different sets of parallel planes and then apply the KM algorithm over each slice, to obtain “embedded-curves.” For the second method, we approximate our first method by restricting embedded-curves to be “embedded-lines” thus enhancing computational speed. These type reduction techniques can be applied to applications involving multi-dimensional centroid estimation such as, clustering, support vector estimation for dimensionality reduction, fuzzy logic controllers, to mention a few.\",\"PeriodicalId\":408343,\"journal\":{\"name\":\"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ-IEEE.2017.8015724\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ-IEEE.2017.8015724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了多维区间2型(IT2)模糊集的约简问题。我们利用Karnik-Mendel (KM)算法来估计多维不确定性足迹(FOU)的质心边界。我们处理二维(2-D)模糊集,因为我们可以使用3-D图来可视化FOU,从而使方法的说明变得简单。然而,基本思想可以扩展到多个维度。给出了二维IT2模糊隶属函数(FMF)质心边界的形式化定义,并给出了其估计的两种方法。第一种方法计算嵌入型1 (T1) FSs,其质心构成质心边界。我们通过使用不同的平行平面集生成域的切片来获得嵌入集,然后在每个切片上应用KM算法,以获得“嵌入曲线”。对于第二种方法,我们通过将嵌入曲线限制为“嵌入线”来近似第一种方法,从而提高了计算速度。这些类型约简技术可以应用于涉及多维质心估计的应用,如聚类、支持向量估计降维、模糊逻辑控制器等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Type reduction techniques for two-dimensional interval type-2 fuzzy sets
In this paper, we address the issue of type reduction of multi-dimensional interval type-2 (IT2) fuzzy sets (FSs). We utilize the Karnik-Mendel (KM) algorithm to estimate the centroid boundary of a multi-dimensional footprint of uncertainty (FOU). We deal with two-dimensional (2-D) fuzzy sets as we can visualize the FOU using 3-D plots, thus making the illustration of the methods simple. However, the basic idea can be extended to multiple dimensions. We give a formal definition of the centroid boundary of a 2-D IT2 fuzzy membership function (FMF) and propose two methods for its estimation. The first method computes embedded type-1 (T1) FSs whose centroids constitute the centroid boundary. We obtain the embedded sets by producing slices of the domain using different sets of parallel planes and then apply the KM algorithm over each slice, to obtain “embedded-curves.” For the second method, we approximate our first method by restricting embedded-curves to be “embedded-lines” thus enhancing computational speed. These type reduction techniques can be applied to applications involving multi-dimensional centroid estimation such as, clustering, support vector estimation for dimensionality reduction, fuzzy logic controllers, to mention a few.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信