Groupoid的知识图表示学习:统一TransE, RotatE, QuatE, ComplEx

Han Yang, Junfei Liu
{"title":"Groupoid的知识图表示学习:统一TransE, RotatE, QuatE, ComplEx","authors":"Han Yang, Junfei Liu","doi":"10.1145/3459637.3482442","DOIUrl":null,"url":null,"abstract":"Knowledge graph (KG) representation learning which aims to encode entities and relations into low-dimensional spaces, has been widely used in KG completion and link prediction. Although existing KG representation learning models have shown promising performance, the theoretical mechanism behind existing models is much less well-understood. It is challenging to accurately portray the internal connections between models and build a competitive model systematically. To overcome this problem, a unified KG representation learning framework, called GrpKG, is proposed in this paper to model the KG representation learning from a generic groupoid perspective. We discover that many existing models are essentially the same in the sense of groupoid isomorphism and further provide transformation methods between different models. Moreover, we explore the applications of GrpKG in the model classification as well as other processes. The experiments on several benchmark data sets validate the effectiveness and superiority of our framework by comparing two proposed models (GrpQ8 and GrpM2) with the state-of-the-art models.","PeriodicalId":405296,"journal":{"name":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Knowledge Graph Representation Learning as Groupoid: Unifying TransE, RotatE, QuatE, ComplEx\",\"authors\":\"Han Yang, Junfei Liu\",\"doi\":\"10.1145/3459637.3482442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge graph (KG) representation learning which aims to encode entities and relations into low-dimensional spaces, has been widely used in KG completion and link prediction. Although existing KG representation learning models have shown promising performance, the theoretical mechanism behind existing models is much less well-understood. It is challenging to accurately portray the internal connections between models and build a competitive model systematically. To overcome this problem, a unified KG representation learning framework, called GrpKG, is proposed in this paper to model the KG representation learning from a generic groupoid perspective. We discover that many existing models are essentially the same in the sense of groupoid isomorphism and further provide transformation methods between different models. Moreover, we explore the applications of GrpKG in the model classification as well as other processes. The experiments on several benchmark data sets validate the effectiveness and superiority of our framework by comparing two proposed models (GrpQ8 and GrpM2) with the state-of-the-art models.\",\"PeriodicalId\":405296,\"journal\":{\"name\":\"Proceedings of the 30th ACM International Conference on Information & Knowledge Management\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th ACM International Conference on Information & Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3459637.3482442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3482442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

知识图表示学习旨在将实体和关系编码到低维空间中,已广泛应用于知识图补全和链接预测。虽然现有的KG表示学习模型已经显示出良好的性能,但现有模型背后的理论机制却知之甚少。准确地描绘模型之间的内在联系,系统地构建竞争模型是一项挑战。为了克服这个问题,本文提出了一个统一的KG表示学习框架GrpKG,从一般类群的角度对KG表示学习进行建模。我们发现许多现有模型在类群同构意义上本质上是相同的,并进一步提供了不同模型之间的转换方法。此外,我们还探索了GrpKG在模型分类以及其他过程中的应用。在几个基准数据集上的实验通过将两个模型(GrpQ8和GrpM2)与最先进的模型进行比较,验证了我们框架的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Knowledge Graph Representation Learning as Groupoid: Unifying TransE, RotatE, QuatE, ComplEx
Knowledge graph (KG) representation learning which aims to encode entities and relations into low-dimensional spaces, has been widely used in KG completion and link prediction. Although existing KG representation learning models have shown promising performance, the theoretical mechanism behind existing models is much less well-understood. It is challenging to accurately portray the internal connections between models and build a competitive model systematically. To overcome this problem, a unified KG representation learning framework, called GrpKG, is proposed in this paper to model the KG representation learning from a generic groupoid perspective. We discover that many existing models are essentially the same in the sense of groupoid isomorphism and further provide transformation methods between different models. Moreover, we explore the applications of GrpKG in the model classification as well as other processes. The experiments on several benchmark data sets validate the effectiveness and superiority of our framework by comparing two proposed models (GrpQ8 and GrpM2) with the state-of-the-art models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信