包含根号和的方程的积分解的个数

D. Andrica, George C. Ţurcaş
{"title":"包含根号和的方程的积分解的个数","authors":"D. Andrica, George C. Ţurcaş","doi":"10.17114/j.aua.2019.58.07","DOIUrl":null,"url":null,"abstract":"In this short note, we present a Galois-theoretic proof for the following result. Given an integer k ≥ 2 and fixed positive integers n1, . . . , nk, the number of solutions (x1, . . . , xk, y) ∈ (Z≥0) to the equation (1) is finite. This generalises a problem proposed by the authors and selected for the final round of the Romanian Mathematical Olympiad in 2019. In Theorem 2, we prove an interesting lower bound for the number of such solutions in the particular case when n1 = · · · = nk = n. This lower bound involves the number of divisors function. In the same case, we formulate two conjectures regarding the sequence generated by the number of such solutions. In the first conjecture, we speculate that when k = 2, the sequence takes every positive integer value. The second conjecture concerns an asymptotic of that should hold for general values of k ≥ 2. These are supported by extensive computer calculations. 2010 Mathematics Subject Classification: 11B99, 11A25.","PeriodicalId":319629,"journal":{"name":"Acta Universitatis Apulensis","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE NUMBER OF INTEGRAL SOLUTIONS TO AN EQUATION INVOLVING SUMS OF RADICALS\",\"authors\":\"D. Andrica, George C. Ţurcaş\",\"doi\":\"10.17114/j.aua.2019.58.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this short note, we present a Galois-theoretic proof for the following result. Given an integer k ≥ 2 and fixed positive integers n1, . . . , nk, the number of solutions (x1, . . . , xk, y) ∈ (Z≥0) to the equation (1) is finite. This generalises a problem proposed by the authors and selected for the final round of the Romanian Mathematical Olympiad in 2019. In Theorem 2, we prove an interesting lower bound for the number of such solutions in the particular case when n1 = · · · = nk = n. This lower bound involves the number of divisors function. In the same case, we formulate two conjectures regarding the sequence generated by the number of such solutions. In the first conjecture, we speculate that when k = 2, the sequence takes every positive integer value. The second conjecture concerns an asymptotic of that should hold for general values of k ≥ 2. These are supported by extensive computer calculations. 2010 Mathematics Subject Classification: 11B99, 11A25.\",\"PeriodicalId\":319629,\"journal\":{\"name\":\"Acta Universitatis Apulensis\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Apulensis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17114/j.aua.2019.58.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Apulensis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17114/j.aua.2019.58.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇简短的文章中,我们对下面的结果给出了伽罗瓦理论的证明。给定整数k≥2和固定正整数n1,…, nk,解的个数(x1,…), xk, y)∈(Z≥0)对式(1)是有限的。这概括了作者提出的一个问题,并被选为2019年罗马尼亚数学奥林匹克竞赛的最后一轮。在定理2中,我们证明了在n1 =···= nk = n的特殊情况下,这类解的个数的一个有趣的下界。这个下界涉及到除数函数的个数。在同样的情况下,我们对这些解的数量所产生的序列提出了两个猜想。在第一个猜想中,我们推测当k = 2时,序列取每一个正整数。第二个猜想是关于对于k≥2的一般值的渐近。这些都得到了大量计算机计算的支持。2010数学学科分类:11B99, 11A25。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
THE NUMBER OF INTEGRAL SOLUTIONS TO AN EQUATION INVOLVING SUMS OF RADICALS
In this short note, we present a Galois-theoretic proof for the following result. Given an integer k ≥ 2 and fixed positive integers n1, . . . , nk, the number of solutions (x1, . . . , xk, y) ∈ (Z≥0) to the equation (1) is finite. This generalises a problem proposed by the authors and selected for the final round of the Romanian Mathematical Olympiad in 2019. In Theorem 2, we prove an interesting lower bound for the number of such solutions in the particular case when n1 = · · · = nk = n. This lower bound involves the number of divisors function. In the same case, we formulate two conjectures regarding the sequence generated by the number of such solutions. In the first conjecture, we speculate that when k = 2, the sequence takes every positive integer value. The second conjecture concerns an asymptotic of that should hold for general values of k ≥ 2. These are supported by extensive computer calculations. 2010 Mathematics Subject Classification: 11B99, 11A25.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信