{"title":"铌上气相扩散Nb3Sn薄膜纳米压痕的初步结果","authors":"U. Pudasaini, G. Eremeev, S. Cheban","doi":"10.2172/1989924","DOIUrl":null,"url":null,"abstract":"The mechanical vulnerability of the Nb3Sn-coated cavities is identified as one of the significant technical hurdles toward deploying them in practical accelerator applications in the not-so-distant future. It is crucial to characterize the material's mechanical properties in ways to address such vulnerability. Nanoindentation is a widely used technique for measuring the mechanical properties of thin films that involves indenting the film with a small diamond tip and measuring the force-displacement response to calculate the film's elastic modulus, hardness, and other mechanical properties. The nanoindentation analysis was performed on multiple vapor-diffused Nb3Sn samples coated at Jefferson Lab and Fermilab coating facilities for the first time. This contribution will discuss the first results obtained from the nanoindentation of Nb3Sn-coated Nb samples prepared via the Sn vapor diffusion technique.","PeriodicalId":440370,"journal":{"name":"First Results from Nanoindentation of Vapor Diffused Nb3Sn Films on Nb","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First Results from Nanoindentation of Vapor Diffused Nb3Sn Films on Nb\",\"authors\":\"U. Pudasaini, G. Eremeev, S. Cheban\",\"doi\":\"10.2172/1989924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mechanical vulnerability of the Nb3Sn-coated cavities is identified as one of the significant technical hurdles toward deploying them in practical accelerator applications in the not-so-distant future. It is crucial to characterize the material's mechanical properties in ways to address such vulnerability. Nanoindentation is a widely used technique for measuring the mechanical properties of thin films that involves indenting the film with a small diamond tip and measuring the force-displacement response to calculate the film's elastic modulus, hardness, and other mechanical properties. The nanoindentation analysis was performed on multiple vapor-diffused Nb3Sn samples coated at Jefferson Lab and Fermilab coating facilities for the first time. This contribution will discuss the first results obtained from the nanoindentation of Nb3Sn-coated Nb samples prepared via the Sn vapor diffusion technique.\",\"PeriodicalId\":440370,\"journal\":{\"name\":\"First Results from Nanoindentation of Vapor Diffused Nb3Sn Films on Nb\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First Results from Nanoindentation of Vapor Diffused Nb3Sn Films on Nb\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2172/1989924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First Results from Nanoindentation of Vapor Diffused Nb3Sn Films on Nb","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2172/1989924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
First Results from Nanoindentation of Vapor Diffused Nb3Sn Films on Nb
The mechanical vulnerability of the Nb3Sn-coated cavities is identified as one of the significant technical hurdles toward deploying them in practical accelerator applications in the not-so-distant future. It is crucial to characterize the material's mechanical properties in ways to address such vulnerability. Nanoindentation is a widely used technique for measuring the mechanical properties of thin films that involves indenting the film with a small diamond tip and measuring the force-displacement response to calculate the film's elastic modulus, hardness, and other mechanical properties. The nanoindentation analysis was performed on multiple vapor-diffused Nb3Sn samples coated at Jefferson Lab and Fermilab coating facilities for the first time. This contribution will discuss the first results obtained from the nanoindentation of Nb3Sn-coated Nb samples prepared via the Sn vapor diffusion technique.