视频序列中多视图人脸聚类的新方法

Panpan Huang, Yunhong Wang, Ming Shao
{"title":"视频序列中多视图人脸聚类的新方法","authors":"Panpan Huang, Yunhong Wang, Ming Shao","doi":"10.1109/ICDMW.2008.63","DOIUrl":null,"url":null,"abstract":"In the problem of face clustering with multi-views, the similarity between faces of different persons with similar pose is usually greater than the similarity between multi-view faces of the same person. This may exert a tremendous impact on the clustering result that sent back to the user. To solve this problem, we should do pose clustering first and then within each dasiapose grouppsila, clustering images of different individuals. Gabor filters have been used to detect the eyes in the face image. The coordinate of the eyes have been extracted as an input feature for the dasiapose clusteringpsila. After doing this, images of the similar pose will be in the same cluster. PCA/ LBP and kmeans algorithms have been used in each pose cluster for clustering of different individuals. The precision of face classification with clustering is enhanced. The proposed clustering algorithms can be applied to and face indexing or face recognition system.","PeriodicalId":175955,"journal":{"name":"2008 IEEE International Conference on Data Mining Workshops","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A New Method for Multi-view Face Clustering in Video Sequence\",\"authors\":\"Panpan Huang, Yunhong Wang, Ming Shao\",\"doi\":\"10.1109/ICDMW.2008.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the problem of face clustering with multi-views, the similarity between faces of different persons with similar pose is usually greater than the similarity between multi-view faces of the same person. This may exert a tremendous impact on the clustering result that sent back to the user. To solve this problem, we should do pose clustering first and then within each dasiapose grouppsila, clustering images of different individuals. Gabor filters have been used to detect the eyes in the face image. The coordinate of the eyes have been extracted as an input feature for the dasiapose clusteringpsila. After doing this, images of the similar pose will be in the same cluster. PCA/ LBP and kmeans algorithms have been used in each pose cluster for clustering of different individuals. The precision of face classification with clustering is enhanced. The proposed clustering algorithms can be applied to and face indexing or face recognition system.\",\"PeriodicalId\":175955,\"journal\":{\"name\":\"2008 IEEE International Conference on Data Mining Workshops\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Data Mining Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2008.63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2008.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

在多视图人脸聚类问题中,具有相似姿态的不同人的人脸之间的相似性通常大于同一人的多视图人脸之间的相似性。这可能会对返回给用户的集群结果产生巨大的影响。为了解决这一问题,我们应该首先进行姿态聚类,然后在每个数据库组内对不同个体的图像进行聚类。Gabor滤波器被用来检测人脸图像中的眼睛。眼睛的坐标作为输入特征被提取出来,用于聚类算法。这样做之后,相似姿势的图像将在同一个集群中。在每个姿态聚类中分别使用PCA/ LBP和kmeans算法对不同个体进行聚类。利用聚类方法提高了人脸分类的精度。本文提出的聚类算法可应用于人脸索引或人脸识别系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Method for Multi-view Face Clustering in Video Sequence
In the problem of face clustering with multi-views, the similarity between faces of different persons with similar pose is usually greater than the similarity between multi-view faces of the same person. This may exert a tremendous impact on the clustering result that sent back to the user. To solve this problem, we should do pose clustering first and then within each dasiapose grouppsila, clustering images of different individuals. Gabor filters have been used to detect the eyes in the face image. The coordinate of the eyes have been extracted as an input feature for the dasiapose clusteringpsila. After doing this, images of the similar pose will be in the same cluster. PCA/ LBP and kmeans algorithms have been used in each pose cluster for clustering of different individuals. The precision of face classification with clustering is enhanced. The proposed clustering algorithms can be applied to and face indexing or face recognition system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信