线性微分与差分方程的闭形式解

M. V. Hoeij
{"title":"线性微分与差分方程的闭形式解","authors":"M. V. Hoeij","doi":"10.1145/3087604.3087660","DOIUrl":null,"url":null,"abstract":"Finding closed form solutions of differential equations has a long history in computer algebra. For example, the Risch algorithm (1969) decides if the equation y' = f can be solved in terms of elementary functions. These are functions that can be written in terms of exp and log, where \"in terms of\" allows for field operations, composition, and algebraic extensions. More generally, functions are in closed form if they are written in terms of commonly used functions. This includes not only exp and log, but other common functions as well, such as Bessel functions or the Gauss hypergeometric function. Given a differential equation L, to find solutions written in terms of such functions, one seeks a sequence of transformations that sends the Bessel equation, or the Gauss hypergeometric equation, to L. Although random equations are unlikely to have closed form solutions, they are remarkably common in applications. For example, if y = ∑n=0∞ an xn has a positive radius of convergence, integer coefficients an, and satisfies a second order homogeneous linear differential equation L with polynomial coefficients, then L is conjectured to be solvable in closed form. Such equations are common, not only in combinatorics, but in physics as well. The talk will describe recent progress in finding closed form solutions of differential and difference equations, as well as open questions.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Closed Form Solutions for Linear Differential and Difference Equations\",\"authors\":\"M. V. Hoeij\",\"doi\":\"10.1145/3087604.3087660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finding closed form solutions of differential equations has a long history in computer algebra. For example, the Risch algorithm (1969) decides if the equation y' = f can be solved in terms of elementary functions. These are functions that can be written in terms of exp and log, where \\\"in terms of\\\" allows for field operations, composition, and algebraic extensions. More generally, functions are in closed form if they are written in terms of commonly used functions. This includes not only exp and log, but other common functions as well, such as Bessel functions or the Gauss hypergeometric function. Given a differential equation L, to find solutions written in terms of such functions, one seeks a sequence of transformations that sends the Bessel equation, or the Gauss hypergeometric equation, to L. Although random equations are unlikely to have closed form solutions, they are remarkably common in applications. For example, if y = ∑n=0∞ an xn has a positive radius of convergence, integer coefficients an, and satisfies a second order homogeneous linear differential equation L with polynomial coefficients, then L is conjectured to be solvable in closed form. Such equations are common, not only in combinatorics, but in physics as well. The talk will describe recent progress in finding closed form solutions of differential and difference equations, as well as open questions.\",\"PeriodicalId\":243282,\"journal\":{\"name\":\"International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3087604.3087660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3087604.3087660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

求微分方程的闭形式解在计算机代数中有着悠久的历史。例如,Risch算法(1969)决定方程y' = f是否可以用初等函数来求解。这些函数可以用exp和log来编写,其中“in terms of”允许字段操作、组合和代数扩展。更一般地说,如果用常用函数来写函数,那么函数就是封闭形式的。这不仅包括exp和log,还包括其他常见函数,如贝塞尔函数或高斯超几何函数。给定一个微分方程L,为了找到用这样的函数表示的解,人们寻求将贝塞尔方程或高斯超几何方程转换成L的一系列变换。尽管随机方程不太可能有封闭形式的解,但它们在应用中非常常见。例如,如果y =∑n=0∞,且xn的收敛半径为正,系数为整数,且满足系数为多项式的二阶齐次线性微分方程L,则推测L是可解的闭形式。这样的方程不仅在组合学中很常见,在物理学中也很常见。讲座将描述在寻找微分和差分方程的封闭形式解以及开放问题方面的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Closed Form Solutions for Linear Differential and Difference Equations
Finding closed form solutions of differential equations has a long history in computer algebra. For example, the Risch algorithm (1969) decides if the equation y' = f can be solved in terms of elementary functions. These are functions that can be written in terms of exp and log, where "in terms of" allows for field operations, composition, and algebraic extensions. More generally, functions are in closed form if they are written in terms of commonly used functions. This includes not only exp and log, but other common functions as well, such as Bessel functions or the Gauss hypergeometric function. Given a differential equation L, to find solutions written in terms of such functions, one seeks a sequence of transformations that sends the Bessel equation, or the Gauss hypergeometric equation, to L. Although random equations are unlikely to have closed form solutions, they are remarkably common in applications. For example, if y = ∑n=0∞ an xn has a positive radius of convergence, integer coefficients an, and satisfies a second order homogeneous linear differential equation L with polynomial coefficients, then L is conjectured to be solvable in closed form. Such equations are common, not only in combinatorics, but in physics as well. The talk will describe recent progress in finding closed form solutions of differential and difference equations, as well as open questions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信