N. Gorretta, J. Roger, G. Rabatel, V. Bellon-Maurel, C. Fiorio, C. Lelong
{"title":"高光谱图像分割:蝴蝶方法","authors":"N. Gorretta, J. Roger, G. Rabatel, V. Bellon-Maurel, C. Fiorio, C. Lelong","doi":"10.1109/WHISPERS.2009.5289062","DOIUrl":null,"url":null,"abstract":"Few methods are proposed in the litterature for coupling the spectral and the spatial dimension available on hyperspectral images. This paper proposes a generic segmentation scheme named butterfly based on an iterative process and a cross analysis of spectral and spatial information. Indeed, spatial and spatial structures are extracted in spatial and spectral space respectively both taking into account the other one. To apply this layout on hyperspectral imgages, we focus particulary on spatial and spectral structures i.e. topologic concepts and latent variable for the spatial and the spectral space respectively. Moreover, a cooperation scheme with these structures is proposed. Finally, results obtained on real hyperspectral images using this specific implementation of the butterfly approach are presented and discussed.","PeriodicalId":242447,"journal":{"name":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Hyperspectral image segmentation: The butterfly approach\",\"authors\":\"N. Gorretta, J. Roger, G. Rabatel, V. Bellon-Maurel, C. Fiorio, C. Lelong\",\"doi\":\"10.1109/WHISPERS.2009.5289062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Few methods are proposed in the litterature for coupling the spectral and the spatial dimension available on hyperspectral images. This paper proposes a generic segmentation scheme named butterfly based on an iterative process and a cross analysis of spectral and spatial information. Indeed, spatial and spatial structures are extracted in spatial and spectral space respectively both taking into account the other one. To apply this layout on hyperspectral imgages, we focus particulary on spatial and spectral structures i.e. topologic concepts and latent variable for the spatial and the spectral space respectively. Moreover, a cooperation scheme with these structures is proposed. Finally, results obtained on real hyperspectral images using this specific implementation of the butterfly approach are presented and discussed.\",\"PeriodicalId\":242447,\"journal\":{\"name\":\"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2009.5289062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2009.5289062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hyperspectral image segmentation: The butterfly approach
Few methods are proposed in the litterature for coupling the spectral and the spatial dimension available on hyperspectral images. This paper proposes a generic segmentation scheme named butterfly based on an iterative process and a cross analysis of spectral and spatial information. Indeed, spatial and spatial structures are extracted in spatial and spectral space respectively both taking into account the other one. To apply this layout on hyperspectral imgages, we focus particulary on spatial and spectral structures i.e. topologic concepts and latent variable for the spatial and the spectral space respectively. Moreover, a cooperation scheme with these structures is proposed. Finally, results obtained on real hyperspectral images using this specific implementation of the butterfly approach are presented and discussed.