预测储层厚度的支持向量机

Yan Deng, Haiying Wang
{"title":"预测储层厚度的支持向量机","authors":"Yan Deng, Haiying Wang","doi":"10.1109/ICNC.2012.6234749","DOIUrl":null,"url":null,"abstract":"Reservoir thickness is an important parameter in the description and simulation of reservoir. The principle and method of the Support Vector Machines are introduced in this paper. Based on the previous study of seismic interpretation, 100 sets of data of the five seismic attributes and the reservoir thickness in a work area are used as the example for predicting the reservoir thickness. The results prove that this method may throw important light on the predicting and computing the reservoir thickness.","PeriodicalId":404981,"journal":{"name":"2012 8th International Conference on Natural Computation","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Support Vector Machines for predicting the reservoir thickness\",\"authors\":\"Yan Deng, Haiying Wang\",\"doi\":\"10.1109/ICNC.2012.6234749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reservoir thickness is an important parameter in the description and simulation of reservoir. The principle and method of the Support Vector Machines are introduced in this paper. Based on the previous study of seismic interpretation, 100 sets of data of the five seismic attributes and the reservoir thickness in a work area are used as the example for predicting the reservoir thickness. The results prove that this method may throw important light on the predicting and computing the reservoir thickness.\",\"PeriodicalId\":404981,\"journal\":{\"name\":\"2012 8th International Conference on Natural Computation\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 8th International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2012.6234749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.6234749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

储层厚度是储层描述和模拟中的一个重要参数。本文介绍了支持向量机的原理和方法。在前人地震解释研究的基础上,以某工区100套地震属性和储层厚度数据为例,进行储层厚度预测。结果表明,该方法对储层厚度的预测和计算具有重要的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Support Vector Machines for predicting the reservoir thickness
Reservoir thickness is an important parameter in the description and simulation of reservoir. The principle and method of the Support Vector Machines are introduced in this paper. Based on the previous study of seismic interpretation, 100 sets of data of the five seismic attributes and the reservoir thickness in a work area are used as the example for predicting the reservoir thickness. The results prove that this method may throw important light on the predicting and computing the reservoir thickness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信