一种有效的蒙特卡罗搜索特征选择方法

Muhammad Umar Chaudhry, Sang-Wook Kim, Jee-Hyong Lee
{"title":"一种有效的蒙特卡罗搜索特征选择方法","authors":"Muhammad Umar Chaudhry, Sang-Wook Kim, Jee-Hyong Lee","doi":"10.1145/3129676.3130240","DOIUrl":null,"url":null,"abstract":"Feature selection is the challenging problem in the field of machine learning. The task is to identify the optimal feature subset by eliminating the redundant and irrelevant features from the dataset. The problem becomes more complicated when dealing with high-dimensional datasets. In this paper, we propose the novel technique based on Monte Carlo Tree Search (MCTS) to find the best feature subset to classify the dataset in hand. The effectiveness and validity of the proposed method is demonstrated by experimenting on many real world datasets.","PeriodicalId":326100,"journal":{"name":"Proceedings of the International Conference on Research in Adaptive and Convergent Systems","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Effective Feature Selection method using Monte Carlo Search\",\"authors\":\"Muhammad Umar Chaudhry, Sang-Wook Kim, Jee-Hyong Lee\",\"doi\":\"10.1145/3129676.3130240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature selection is the challenging problem in the field of machine learning. The task is to identify the optimal feature subset by eliminating the redundant and irrelevant features from the dataset. The problem becomes more complicated when dealing with high-dimensional datasets. In this paper, we propose the novel technique based on Monte Carlo Tree Search (MCTS) to find the best feature subset to classify the dataset in hand. The effectiveness and validity of the proposed method is demonstrated by experimenting on many real world datasets.\",\"PeriodicalId\":326100,\"journal\":{\"name\":\"Proceedings of the International Conference on Research in Adaptive and Convergent Systems\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Research in Adaptive and Convergent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3129676.3130240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Research in Adaptive and Convergent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3129676.3130240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

特征选择是机器学习领域中具有挑战性的问题。任务是通过消除数据集中冗余和不相关的特征来识别最优特征子集。当处理高维数据集时,问题变得更加复杂。在本文中,我们提出了一种基于蒙特卡罗树搜索(MCTS)的新技术来寻找最佳的特征子集来对手头的数据集进行分类。通过对大量真实数据集的实验,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Effective Feature Selection method using Monte Carlo Search
Feature selection is the challenging problem in the field of machine learning. The task is to identify the optimal feature subset by eliminating the redundant and irrelevant features from the dataset. The problem becomes more complicated when dealing with high-dimensional datasets. In this paper, we propose the novel technique based on Monte Carlo Tree Search (MCTS) to find the best feature subset to classify the dataset in hand. The effectiveness and validity of the proposed method is demonstrated by experimenting on many real world datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信