自组装原子开关网络中的复杂网络动力学:神经形态计算的前景

S. Bose, S. Shirai, J. Mallinson, S. Acharya, E. Galli, S. Brown
{"title":"自组装原子开关网络中的复杂网络动力学:神经形态计算的前景","authors":"S. Bose, S. Shirai, J. Mallinson, S. Acharya, E. Galli, S. Brown","doi":"10.1109/NANO.2018.8626230","DOIUrl":null,"url":null,"abstract":"The inherent power of the biological brain, with regard to pattern recognition, is unparalleled and cannot even be matched by multi-million dollar supercomputers. Inspired from this, neuromorphic computation, where ideas originating from the complex structure and functionality of the biological brain are utilized for advanced computation has shown great potential. In this regard, we are developing on-chip pattern classification capabilities via inexpensive self-assembly of nanoparticles (NPs). The formation of percolating microstructure of Sn NPs and tunnel junctions leads to a complex atomic-switch network (ASN) poised near criticality. Voltage stimulation is utilized for modulating the synaptic structure of the network, which shows potential for utilization as a ‘reservoir’ in reservoir computing (RC).","PeriodicalId":425521,"journal":{"name":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Complex network dynamics in self-assembled atomic-switch networks: prospects for neuromorphic computation\",\"authors\":\"S. Bose, S. Shirai, J. Mallinson, S. Acharya, E. Galli, S. Brown\",\"doi\":\"10.1109/NANO.2018.8626230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The inherent power of the biological brain, with regard to pattern recognition, is unparalleled and cannot even be matched by multi-million dollar supercomputers. Inspired from this, neuromorphic computation, where ideas originating from the complex structure and functionality of the biological brain are utilized for advanced computation has shown great potential. In this regard, we are developing on-chip pattern classification capabilities via inexpensive self-assembly of nanoparticles (NPs). The formation of percolating microstructure of Sn NPs and tunnel junctions leads to a complex atomic-switch network (ASN) poised near criticality. Voltage stimulation is utilized for modulating the synaptic structure of the network, which shows potential for utilization as a ‘reservoir’ in reservoir computing (RC).\",\"PeriodicalId\":425521,\"journal\":{\"name\":\"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2018.8626230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2018.8626230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在模式识别方面,生物大脑的内在力量是无与伦比的,甚至连价值数百万美元的超级计算机也无法与之匹敌。受此启发,神经形态计算(neuromorphic computation)显示出了巨大的潜力。在神经形态计算中,源自生物大脑复杂结构和功能的思想被用于高级计算。在这方面,我们正在通过纳米颗粒(NPs)的廉价自组装来开发芯片上的模式分类能力。Sn纳米粒子的渗透微观结构和隧道结的形成导致了一个接近临界的复杂原子开关网络(ASN)。电压刺激被用来调节网络的突触结构,这显示了在水库计算(RC)中作为“水库”的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complex network dynamics in self-assembled atomic-switch networks: prospects for neuromorphic computation
The inherent power of the biological brain, with regard to pattern recognition, is unparalleled and cannot even be matched by multi-million dollar supercomputers. Inspired from this, neuromorphic computation, where ideas originating from the complex structure and functionality of the biological brain are utilized for advanced computation has shown great potential. In this regard, we are developing on-chip pattern classification capabilities via inexpensive self-assembly of nanoparticles (NPs). The formation of percolating microstructure of Sn NPs and tunnel junctions leads to a complex atomic-switch network (ASN) poised near criticality. Voltage stimulation is utilized for modulating the synaptic structure of the network, which shows potential for utilization as a ‘reservoir’ in reservoir computing (RC).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信