改进了基于GPU架构的快速PCA算法

V. Melikyan, Hasmik Osipyan
{"title":"改进了基于GPU架构的快速PCA算法","authors":"V. Melikyan, Hasmik Osipyan","doi":"10.1109/EWDTS.2014.7027099","DOIUrl":null,"url":null,"abstract":"Recognition task is a hard problem due to the high dimension of input image data. The principal component analysis (PCA) is the one of the most popular algorithms for reducing the dimensionality. The main constraint of PCA is the execution time in terms of updating when new data is included; therefore, parallel computation is needed. Opening the GPU architectures to general purpose computation allows performing parallel computation on a powerful platform. In this paper the modified version of fast PCA (MFPCA) algorithm is presented on the GPU architecture and also the suitability of the algorithm for face recognition task is discussed. The performance and efficiency of MFPCA algorithm is studied on large-scale datasets. Experimental results show a decrease of the MFPCA algorithm execution time while preserving the quality of the results.","PeriodicalId":272780,"journal":{"name":"Proceedings of IEEE East-West Design & Test Symposium (EWDTS 2014)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modified fast PCA algorithm on GPU architecture\",\"authors\":\"V. Melikyan, Hasmik Osipyan\",\"doi\":\"10.1109/EWDTS.2014.7027099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recognition task is a hard problem due to the high dimension of input image data. The principal component analysis (PCA) is the one of the most popular algorithms for reducing the dimensionality. The main constraint of PCA is the execution time in terms of updating when new data is included; therefore, parallel computation is needed. Opening the GPU architectures to general purpose computation allows performing parallel computation on a powerful platform. In this paper the modified version of fast PCA (MFPCA) algorithm is presented on the GPU architecture and also the suitability of the algorithm for face recognition task is discussed. The performance and efficiency of MFPCA algorithm is studied on large-scale datasets. Experimental results show a decrease of the MFPCA algorithm execution time while preserving the quality of the results.\",\"PeriodicalId\":272780,\"journal\":{\"name\":\"Proceedings of IEEE East-West Design & Test Symposium (EWDTS 2014)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE East-West Design & Test Symposium (EWDTS 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EWDTS.2014.7027099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE East-West Design & Test Symposium (EWDTS 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EWDTS.2014.7027099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于输入图像数据的高维,识别任务是一个难题。主成分分析(PCA)是目前最常用的降维算法之一。PCA的主要约束是在包含新数据时更新的执行时间;因此,需要并行计算。将GPU架构开放给通用计算允许在一个强大的平台上执行并行计算。本文提出了基于GPU架构的改进版快速主成分分析(MFPCA)算法,并讨论了该算法在人脸识别任务中的适用性。在大规模数据集上研究了MFPCA算法的性能和效率。实验结果表明,在保证结果质量的前提下,减少了MFPCA算法的执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified fast PCA algorithm on GPU architecture
Recognition task is a hard problem due to the high dimension of input image data. The principal component analysis (PCA) is the one of the most popular algorithms for reducing the dimensionality. The main constraint of PCA is the execution time in terms of updating when new data is included; therefore, parallel computation is needed. Opening the GPU architectures to general purpose computation allows performing parallel computation on a powerful platform. In this paper the modified version of fast PCA (MFPCA) algorithm is presented on the GPU architecture and also the suitability of the algorithm for face recognition task is discussed. The performance and efficiency of MFPCA algorithm is studied on large-scale datasets. Experimental results show a decrease of the MFPCA algorithm execution time while preserving the quality of the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信