基于液-液相分离倾向和突触功能的深度序列表示学习预测人类蛋白质

Anqi Wei, Liangjiang Wang
{"title":"基于液-液相分离倾向和突触功能的深度序列表示学习预测人类蛋白质","authors":"Anqi Wei, Liangjiang Wang","doi":"10.1145/3535508.3545550","DOIUrl":null,"url":null,"abstract":"With advancements in next-generation sequencing techniques, the whole protein sequence repertoire has increased to a great extent. In the meantime, deep learning techniques have promoted the development of computational methods to interpret large-scale proteomic data and facilitate functional studies of proteins. Inferring properties from protein amino acid sequences has been a long-standing problem in Bioinformatics. Extensive studies have successfully applied natural language processing (NLP) techniques for the representation learning of protein sequences. In this paper, we applied the deep sequence model - UDSMProt, to fine-tune and evaluate two protein prediction tasks: (1) predict proteins with liquid-liquid phase separation propensity and (2) predict synaptic proteins. Our results have shown that, without prior domain knowledge and only based on protein sequences, the fine-tuned language models achieved high classification accuracies and outperformed baseline models using compositional k-mer features in both tasks. Hence, it is promising to apply the protein language model to some learning tasks and the fine-tuned models can be used to predict protein candidates for biological studies.","PeriodicalId":354504,"journal":{"name":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep sequence representation learning for predicting human proteins with liquid-liquid phase separation propensity and synaptic functions\",\"authors\":\"Anqi Wei, Liangjiang Wang\",\"doi\":\"10.1145/3535508.3545550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With advancements in next-generation sequencing techniques, the whole protein sequence repertoire has increased to a great extent. In the meantime, deep learning techniques have promoted the development of computational methods to interpret large-scale proteomic data and facilitate functional studies of proteins. Inferring properties from protein amino acid sequences has been a long-standing problem in Bioinformatics. Extensive studies have successfully applied natural language processing (NLP) techniques for the representation learning of protein sequences. In this paper, we applied the deep sequence model - UDSMProt, to fine-tune and evaluate two protein prediction tasks: (1) predict proteins with liquid-liquid phase separation propensity and (2) predict synaptic proteins. Our results have shown that, without prior domain knowledge and only based on protein sequences, the fine-tuned language models achieved high classification accuracies and outperformed baseline models using compositional k-mer features in both tasks. Hence, it is promising to apply the protein language model to some learning tasks and the fine-tuned models can be used to predict protein candidates for biological studies.\",\"PeriodicalId\":354504,\"journal\":{\"name\":\"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3535508.3545550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3535508.3545550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着下一代测序技术的进步,整个蛋白质序列库在很大程度上增加了。与此同时,深度学习技术促进了计算方法的发展,以解释大规模蛋白质组学数据并促进蛋白质的功能研究。从蛋白质氨基酸序列中推断其性质一直是生物信息学研究中的一个难题。大量研究已经成功地将自然语言处理技术应用于蛋白质序列的表示学习。本文应用深度序列模型UDSMProt对两项蛋白质预测任务进行了微调和评估:(1)预测具有液-液相分离倾向的蛋白质;(2)预测突触蛋白。我们的研究结果表明,在没有预先的领域知识和仅基于蛋白质序列的情况下,微调的语言模型获得了很高的分类精度,并且在两个任务中都优于使用成分k-mer特征的基线模型。因此,将蛋白质语言模型应用于一些学习任务是有希望的,并且微调模型可用于预测生物学研究的候选蛋白质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep sequence representation learning for predicting human proteins with liquid-liquid phase separation propensity and synaptic functions
With advancements in next-generation sequencing techniques, the whole protein sequence repertoire has increased to a great extent. In the meantime, deep learning techniques have promoted the development of computational methods to interpret large-scale proteomic data and facilitate functional studies of proteins. Inferring properties from protein amino acid sequences has been a long-standing problem in Bioinformatics. Extensive studies have successfully applied natural language processing (NLP) techniques for the representation learning of protein sequences. In this paper, we applied the deep sequence model - UDSMProt, to fine-tune and evaluate two protein prediction tasks: (1) predict proteins with liquid-liquid phase separation propensity and (2) predict synaptic proteins. Our results have shown that, without prior domain knowledge and only based on protein sequences, the fine-tuned language models achieved high classification accuracies and outperformed baseline models using compositional k-mer features in both tasks. Hence, it is promising to apply the protein language model to some learning tasks and the fine-tuned models can be used to predict protein candidates for biological studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信