身体传感器网络中细粒度标注的分布式隐马尔可夫模型

E. Guenterberg, Hassan Ghasemzadeh, R. Jafari
{"title":"身体传感器网络中细粒度标注的分布式隐马尔可夫模型","authors":"E. Guenterberg, Hassan Ghasemzadeh, R. Jafari","doi":"10.1109/BSN.2009.45","DOIUrl":null,"url":null,"abstract":"Human movement models often divide movements into parts. In walking the stride can be segmented into four different parts, and in golf and other sports, the swing is divided into section based on the primary direction of motion. When analyzing a movement, it is important to correctly locate the key events dividing portions. There exist methods for dividing certain actions using data from speci¿c sensors. We introduce a generalized method for event annotation based on Hidden Markov Models. Genetic algorithms are used for feature selection and model parameterization. Further, collaborative techniques are explored. We validate this method on a walking dataset using inertial sensors placed on various locations on a human body. Our technique is computationally simple to allow it to run on resource constrained sensor nodes.","PeriodicalId":269861,"journal":{"name":"2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"A Distributed Hidden Markov Model for Fine-grained Annotation in Body Sensor Networks\",\"authors\":\"E. Guenterberg, Hassan Ghasemzadeh, R. Jafari\",\"doi\":\"10.1109/BSN.2009.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human movement models often divide movements into parts. In walking the stride can be segmented into four different parts, and in golf and other sports, the swing is divided into section based on the primary direction of motion. When analyzing a movement, it is important to correctly locate the key events dividing portions. There exist methods for dividing certain actions using data from speci¿c sensors. We introduce a generalized method for event annotation based on Hidden Markov Models. Genetic algorithms are used for feature selection and model parameterization. Further, collaborative techniques are explored. We validate this method on a walking dataset using inertial sensors placed on various locations on a human body. Our technique is computationally simple to allow it to run on resource constrained sensor nodes.\",\"PeriodicalId\":269861,\"journal\":{\"name\":\"2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2009.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2009.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

人体运动模型经常把运动分成几个部分。在走路时,步幅可以分为四个不同的部分,在高尔夫球和其他运动中,挥杆根据运动的主要方向分为几个部分。在分析一个动作时,正确定位划分部分的关键事件是很重要的。有一些方法可以利用来自特定传感器的数据来划分某些动作。提出了一种基于隐马尔可夫模型的事件标注方法。遗传算法用于特征选择和模型参数化。此外,还探讨了协作技术。我们使用放置在人体不同位置的惯性传感器在行走数据集上验证了该方法。我们的技术计算简单,允许它在资源受限的传感器节点上运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Distributed Hidden Markov Model for Fine-grained Annotation in Body Sensor Networks
Human movement models often divide movements into parts. In walking the stride can be segmented into four different parts, and in golf and other sports, the swing is divided into section based on the primary direction of motion. When analyzing a movement, it is important to correctly locate the key events dividing portions. There exist methods for dividing certain actions using data from speci¿c sensors. We introduce a generalized method for event annotation based on Hidden Markov Models. Genetic algorithms are used for feature selection and model parameterization. Further, collaborative techniques are explored. We validate this method on a walking dataset using inertial sensors placed on various locations on a human body. Our technique is computationally simple to allow it to run on resource constrained sensor nodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信