{"title":"某些双模的Cuntz—Pimsner代数的扩展类和KMS态","authors":"A. Rennie, D. Robertson, A. Sims","doi":"10.1142/S1793525317500108","DOIUrl":null,"url":null,"abstract":"For bi-Hilbertian $A$-bimodules, in the sense of Kajiwara--Pinzari--Watatani, we construct a Kasparov module representing the extension class defining the Cuntz--Pimsner algebra. The construction utilises a singular expectation which is defined using the $C^*$-module version of the Jones index for bi-Hilbertian bimodules. The Jones index data also determines a novel quasi-free dynamics and KMS states on these Cuntz--Pimsner algebras.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"The extension class and KMS states for Cuntz--Pimsner algebras of some bi-Hilbertian bimodules\",\"authors\":\"A. Rennie, D. Robertson, A. Sims\",\"doi\":\"10.1142/S1793525317500108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For bi-Hilbertian $A$-bimodules, in the sense of Kajiwara--Pinzari--Watatani, we construct a Kasparov module representing the extension class defining the Cuntz--Pimsner algebra. The construction utilises a singular expectation which is defined using the $C^*$-module version of the Jones index for bi-Hilbertian bimodules. The Jones index data also determines a novel quasi-free dynamics and KMS states on these Cuntz--Pimsner algebras.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S1793525317500108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1793525317500108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The extension class and KMS states for Cuntz--Pimsner algebras of some bi-Hilbertian bimodules
For bi-Hilbertian $A$-bimodules, in the sense of Kajiwara--Pinzari--Watatani, we construct a Kasparov module representing the extension class defining the Cuntz--Pimsner algebra. The construction utilises a singular expectation which is defined using the $C^*$-module version of the Jones index for bi-Hilbertian bimodules. The Jones index data also determines a novel quasi-free dynamics and KMS states on these Cuntz--Pimsner algebras.