基于emd的不同去噪方法在光纤陀螺中的应用

Dang Shu-wen, Han Hongwei, Wang Kangle, Chen Pengzhan
{"title":"基于emd的不同去噪方法在光纤陀螺中的应用","authors":"Dang Shu-wen, Han Hongwei, Wang Kangle, Chen Pengzhan","doi":"10.1145/3018009.3018016","DOIUrl":null,"url":null,"abstract":"The drift signal of Fiber Optic Gyroscope (FOG) is often buried in noise. It is difficult to compensate drift directly, and three filtering methods based on Empirical Mode Decomposition (EMD) are applied. Comparison analysis with filtering methods based on EMD, Ensemble Empirical Mode Decomposition (EEMD) and the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) is done. Experimental analysis results show that CEEMDAN outperforms than other denoising methods based on EMD and EEMD. The CEEMDAN method saves computational cost, requiring only 29.7% of the sifting iterations of the EEMD. Meanwhile, the rate white noise, bias instability and quantization noise involved in original signal is decreased from 0.0029°/√h , 0.0313°/h and 0.7814° to 0.0003°/√h , 0.0034°/h and 0.0111°, respectively, after applying CEEMDAN method.","PeriodicalId":189252,"journal":{"name":"Proceedings of the 2nd International Conference on Communication and Information Processing","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of different EMD-based denosing methods for fiber optic gyro\",\"authors\":\"Dang Shu-wen, Han Hongwei, Wang Kangle, Chen Pengzhan\",\"doi\":\"10.1145/3018009.3018016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The drift signal of Fiber Optic Gyroscope (FOG) is often buried in noise. It is difficult to compensate drift directly, and three filtering methods based on Empirical Mode Decomposition (EMD) are applied. Comparison analysis with filtering methods based on EMD, Ensemble Empirical Mode Decomposition (EEMD) and the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) is done. Experimental analysis results show that CEEMDAN outperforms than other denoising methods based on EMD and EEMD. The CEEMDAN method saves computational cost, requiring only 29.7% of the sifting iterations of the EEMD. Meanwhile, the rate white noise, bias instability and quantization noise involved in original signal is decreased from 0.0029°/√h , 0.0313°/h and 0.7814° to 0.0003°/√h , 0.0034°/h and 0.0111°, respectively, after applying CEEMDAN method.\",\"PeriodicalId\":189252,\"journal\":{\"name\":\"Proceedings of the 2nd International Conference on Communication and Information Processing\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd International Conference on Communication and Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3018009.3018016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Communication and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3018009.3018016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

光纤陀螺的漂移信号经常被噪声所掩盖。针对直接补偿漂移的困难,采用了三种基于经验模态分解(EMD)的滤波方法。并与基于EMD、集成经验模态分解(EEMD)和带自适应噪声的完全集成经验模态分解(CEEMDAN)滤波方法进行了对比分析。实验分析结果表明,CEEMDAN算法优于其他基于EMD和EEMD的去噪方法。CEEMDAN方法节省了计算成本,只需要EEMD筛选迭代次数的29.7%。同时,应用CEEMDAN方法后,原始信号的率白噪声、偏置不稳定性和量化噪声分别从0.0029°/√h、0.0313°/h和0.7814°降低到0.0003°/√h、0.0034°/h和0.0111°。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of different EMD-based denosing methods for fiber optic gyro
The drift signal of Fiber Optic Gyroscope (FOG) is often buried in noise. It is difficult to compensate drift directly, and three filtering methods based on Empirical Mode Decomposition (EMD) are applied. Comparison analysis with filtering methods based on EMD, Ensemble Empirical Mode Decomposition (EEMD) and the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) is done. Experimental analysis results show that CEEMDAN outperforms than other denoising methods based on EMD and EEMD. The CEEMDAN method saves computational cost, requiring only 29.7% of the sifting iterations of the EEMD. Meanwhile, the rate white noise, bias instability and quantization noise involved in original signal is decreased from 0.0029°/√h , 0.0313°/h and 0.7814° to 0.0003°/√h , 0.0034°/h and 0.0111°, respectively, after applying CEEMDAN method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信