学习用于对象分类的核组合

Deyuan Zhang, Xiaolong Wang, Bingquan Liu
{"title":"学习用于对象分类的核组合","authors":"Deyuan Zhang, Xiaolong Wang, Bingquan Liu","doi":"10.1109/ICPR.2010.718","DOIUrl":null,"url":null,"abstract":"Although Support Vector Machines(SVM) succeed in classifying several image databases using image descriptors proposed in the literature, no single descriptor can be optimal for general object categorization. This paper describes a novel framework to learn the optimal combination of kernels corresponding to multiple image descriptors before SVM training, leading to solve a quadratic programming problem efficiently. Our framework takes into account the variation of kernel matrix and imbalanced dataset, which are common in real world image categorization tasks. Experimental results on Graz-01 and Caltech-101 image databases show the effectiveness and robustness of our algorithm.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning the Kernel Combination for Object Categorization\",\"authors\":\"Deyuan Zhang, Xiaolong Wang, Bingquan Liu\",\"doi\":\"10.1109/ICPR.2010.718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although Support Vector Machines(SVM) succeed in classifying several image databases using image descriptors proposed in the literature, no single descriptor can be optimal for general object categorization. This paper describes a novel framework to learn the optimal combination of kernels corresponding to multiple image descriptors before SVM training, leading to solve a quadratic programming problem efficiently. Our framework takes into account the variation of kernel matrix and imbalanced dataset, which are common in real world image categorization tasks. Experimental results on Graz-01 and Caltech-101 image databases show the effectiveness and robustness of our algorithm.\",\"PeriodicalId\":309591,\"journal\":{\"name\":\"2010 20th International Conference on Pattern Recognition\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 20th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2010.718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管支持向量机(SVM)使用文献中提出的图像描述符成功地对多个图像数据库进行了分类,但对于一般对象分类,没有单一的描述符是最优的。本文提出了一种新的框架,在支持向量机训练前学习多个图像描述符对应的核的最优组合,从而有效地解决二次规划问题。我们的框架考虑了核矩阵的变化和不平衡数据集,这是在现实世界的图像分类任务中常见的。在grazi -01和Caltech-101图像数据库上的实验结果表明了该算法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning the Kernel Combination for Object Categorization
Although Support Vector Machines(SVM) succeed in classifying several image databases using image descriptors proposed in the literature, no single descriptor can be optimal for general object categorization. This paper describes a novel framework to learn the optimal combination of kernels corresponding to multiple image descriptors before SVM training, leading to solve a quadratic programming problem efficiently. Our framework takes into account the variation of kernel matrix and imbalanced dataset, which are common in real world image categorization tasks. Experimental results on Graz-01 and Caltech-101 image databases show the effectiveness and robustness of our algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信