E. Kharlamov, S. Brandt, M. Giese, Ernesto Jiménez-Ruiz, Y. Kotidis, S. Lamparter, T. Mailis, C. Neuenstadt, Ö. Özçep, C. Pinkel, A. Soylu, C. Svingos, D. Zheleznyakov, Ian Horrocks, Y. Ioannidis, R. Möller, A. Waaler
{"title":"使用optique: demo实现对静态和流分布式数据的语义访问","authors":"E. Kharlamov, S. Brandt, M. Giese, Ernesto Jiménez-Ruiz, Y. Kotidis, S. Lamparter, T. Mailis, C. Neuenstadt, Ö. Özçep, C. Pinkel, A. Soylu, C. Svingos, D. Zheleznyakov, Ian Horrocks, Y. Ioannidis, R. Möller, A. Waaler","doi":"10.1145/2933267.2933290","DOIUrl":null,"url":null,"abstract":"Real-time processing of data coming from multiple heterogeneous data streams and static databases is a typical task in many industrial scenarios such as diagnostics of large machines. A complex diagnostic task may require a collection of up to hundreds of queries over such data. Although many of these queries retrieve data of the same kind, such as temperature measurements, they access structurally different data sources. In this work, we show how Semantic Technologies implemented in our system Optique can simplify such complex diagnostics by providing an abstraction layer---ontology---that integrates heterogeneous data. In a nutshell, Optique allows complex diagnostic tasks to be expressed with just a few high-level semantic queries, which can be easily formulated with our visual query formulation system. Optique can then automatically enrich these queries, translate them into a large collection of low-level data queries, and finally optimise and efficiently execute the collection in a heavily distributed environment.","PeriodicalId":277061,"journal":{"name":"Proceedings of the 10th ACM International Conference on Distributed and Event-based Systems","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Enabling semantic access to static and streaming distributed data with optique: demo\",\"authors\":\"E. Kharlamov, S. Brandt, M. Giese, Ernesto Jiménez-Ruiz, Y. Kotidis, S. Lamparter, T. Mailis, C. Neuenstadt, Ö. Özçep, C. Pinkel, A. Soylu, C. Svingos, D. Zheleznyakov, Ian Horrocks, Y. Ioannidis, R. Möller, A. Waaler\",\"doi\":\"10.1145/2933267.2933290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time processing of data coming from multiple heterogeneous data streams and static databases is a typical task in many industrial scenarios such as diagnostics of large machines. A complex diagnostic task may require a collection of up to hundreds of queries over such data. Although many of these queries retrieve data of the same kind, such as temperature measurements, they access structurally different data sources. In this work, we show how Semantic Technologies implemented in our system Optique can simplify such complex diagnostics by providing an abstraction layer---ontology---that integrates heterogeneous data. In a nutshell, Optique allows complex diagnostic tasks to be expressed with just a few high-level semantic queries, which can be easily formulated with our visual query formulation system. Optique can then automatically enrich these queries, translate them into a large collection of low-level data queries, and finally optimise and efficiently execute the collection in a heavily distributed environment.\",\"PeriodicalId\":277061,\"journal\":{\"name\":\"Proceedings of the 10th ACM International Conference on Distributed and Event-based Systems\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th ACM International Conference on Distributed and Event-based Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2933267.2933290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM International Conference on Distributed and Event-based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2933267.2933290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enabling semantic access to static and streaming distributed data with optique: demo
Real-time processing of data coming from multiple heterogeneous data streams and static databases is a typical task in many industrial scenarios such as diagnostics of large machines. A complex diagnostic task may require a collection of up to hundreds of queries over such data. Although many of these queries retrieve data of the same kind, such as temperature measurements, they access structurally different data sources. In this work, we show how Semantic Technologies implemented in our system Optique can simplify such complex diagnostics by providing an abstraction layer---ontology---that integrates heterogeneous data. In a nutshell, Optique allows complex diagnostic tasks to be expressed with just a few high-level semantic queries, which can be easily formulated with our visual query formulation system. Optique can then automatically enrich these queries, translate them into a large collection of low-level data queries, and finally optimise and efficiently execute the collection in a heavily distributed environment.