基于形状监督降维的船舶螺旋桨加速仿真驱动优化

Shahroz Khan, S. Gaggero, P. Kaklis, G. Vernengo, D. Villa
{"title":"基于形状监督降维的船舶螺旋桨加速仿真驱动优化","authors":"Shahroz Khan, S. Gaggero, P. Kaklis, G. Vernengo, D. Villa","doi":"10.23967/marine.2023.119","DOIUrl":null,"url":null,"abstract":"Simulation-driven shape optimisation (SDSO) of marine propellers is often obstructed by high-dimensional design spaces stemming from its complex geometry and baseline parameterisation, which leads to the notorious curse of dimensionality. In this study, we propose using the shape-supervised dimension reduction (SSDR) approach to expedite the SDSO of marine propellers by extracting latent features for a lower-dimensional subspace. SSDR is different from other dimension reduction approaches as it utilises a shape-signature vector function, which consists of a shape modification function and geometric moments, maximising the retained geometric and physical information in the subspace. The resulting shape-supervised subspace from SSDR enables us to efficiently and effectively find an optimal design in appropriate areas of the design space. The feasibility of the proposed method is tested for the E779A propeller parameterised with 40 design parameters with the objective to maximise efficiency while reducing suction side cavitation. The results demonstrate that the shape-supervised subspace achieved an 87.5% reduction in the original design space's dimensionality, resulting in faster optimisation convergence.","PeriodicalId":198279,"journal":{"name":"10th Conference on Computational Methods in Marine Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating simulation-driven optimisation of marine propellers using shape-supervised dimension reduction\",\"authors\":\"Shahroz Khan, S. Gaggero, P. Kaklis, G. Vernengo, D. Villa\",\"doi\":\"10.23967/marine.2023.119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simulation-driven shape optimisation (SDSO) of marine propellers is often obstructed by high-dimensional design spaces stemming from its complex geometry and baseline parameterisation, which leads to the notorious curse of dimensionality. In this study, we propose using the shape-supervised dimension reduction (SSDR) approach to expedite the SDSO of marine propellers by extracting latent features for a lower-dimensional subspace. SSDR is different from other dimension reduction approaches as it utilises a shape-signature vector function, which consists of a shape modification function and geometric moments, maximising the retained geometric and physical information in the subspace. The resulting shape-supervised subspace from SSDR enables us to efficiently and effectively find an optimal design in appropriate areas of the design space. The feasibility of the proposed method is tested for the E779A propeller parameterised with 40 design parameters with the objective to maximise efficiency while reducing suction side cavitation. The results demonstrate that the shape-supervised subspace achieved an 87.5% reduction in the original design space's dimensionality, resulting in faster optimisation convergence.\",\"PeriodicalId\":198279,\"journal\":{\"name\":\"10th Conference on Computational Methods in Marine Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"10th Conference on Computational Methods in Marine Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23967/marine.2023.119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th Conference on Computational Methods in Marine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/marine.2023.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

船舶螺旋桨复杂的几何形状和基线参数化导致了高维设计空间的阻碍,从而导致了臭名昭著的维度诅咒。在本研究中,我们提出了使用形状监督降维(SSDR)方法,通过提取低维子空间的潜在特征来加快船舶螺旋桨的SDSO。SSDR不同于其他降维方法,因为它利用了形状特征向量函数,该函数由形状修改函数和几何矩组成,最大限度地保留了子空间中的几何和物理信息。从SSDR得到的形状监督子空间使我们能够有效地在设计空间的适当区域找到最佳设计。该方法的可行性在E779A螺旋桨上进行了测试,该螺旋桨参数化了40个设计参数,目标是在减少吸力侧空化的同时最大化效率。结果表明,形状监督子空间比原设计空间的维数降低了87.5%,优化收敛速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerating simulation-driven optimisation of marine propellers using shape-supervised dimension reduction
Simulation-driven shape optimisation (SDSO) of marine propellers is often obstructed by high-dimensional design spaces stemming from its complex geometry and baseline parameterisation, which leads to the notorious curse of dimensionality. In this study, we propose using the shape-supervised dimension reduction (SSDR) approach to expedite the SDSO of marine propellers by extracting latent features for a lower-dimensional subspace. SSDR is different from other dimension reduction approaches as it utilises a shape-signature vector function, which consists of a shape modification function and geometric moments, maximising the retained geometric and physical information in the subspace. The resulting shape-supervised subspace from SSDR enables us to efficiently and effectively find an optimal design in appropriate areas of the design space. The feasibility of the proposed method is tested for the E779A propeller parameterised with 40 design parameters with the objective to maximise efficiency while reducing suction side cavitation. The results demonstrate that the shape-supervised subspace achieved an 87.5% reduction in the original design space's dimensionality, resulting in faster optimisation convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信