Alexander W. Bergman, David B. Lindell, Gordon Wetzstein
{"title":"深度自适应激光雷达:低采样率下采样和深度完成的端到端优化","authors":"Alexander W. Bergman, David B. Lindell, Gordon Wetzstein","doi":"10.1109/ICCP48838.2020.9105252","DOIUrl":null,"url":null,"abstract":"Current LiDAR systems are limited in their ability to capture dense 3D point clouds. To overcome this challenge, deep learning-based depth completion algorithms have been developed to inpaint missing depth guided by an RGB image. However, these methods fail for low sampling rates. Here, we propose an adaptive sampling scheme for LiDAR systems that demonstrates state-of-the-art performance for depth completion at low sampling rates. Our system is fully differentiable, allowing the sparse depth sampling and the depth inpainting components to be trained end-to-end with an upstream task.","PeriodicalId":406823,"journal":{"name":"2020 IEEE International Conference on Computational Photography (ICCP)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Deep Adaptive LiDAR: End-to-end Optimization of Sampling and Depth Completion at Low Sampling Rates\",\"authors\":\"Alexander W. Bergman, David B. Lindell, Gordon Wetzstein\",\"doi\":\"10.1109/ICCP48838.2020.9105252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current LiDAR systems are limited in their ability to capture dense 3D point clouds. To overcome this challenge, deep learning-based depth completion algorithms have been developed to inpaint missing depth guided by an RGB image. However, these methods fail for low sampling rates. Here, we propose an adaptive sampling scheme for LiDAR systems that demonstrates state-of-the-art performance for depth completion at low sampling rates. Our system is fully differentiable, allowing the sparse depth sampling and the depth inpainting components to be trained end-to-end with an upstream task.\",\"PeriodicalId\":406823,\"journal\":{\"name\":\"2020 IEEE International Conference on Computational Photography (ICCP)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Computational Photography (ICCP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCP48838.2020.9105252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Computational Photography (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP48838.2020.9105252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Adaptive LiDAR: End-to-end Optimization of Sampling and Depth Completion at Low Sampling Rates
Current LiDAR systems are limited in their ability to capture dense 3D point clouds. To overcome this challenge, deep learning-based depth completion algorithms have been developed to inpaint missing depth guided by an RGB image. However, these methods fail for low sampling rates. Here, we propose an adaptive sampling scheme for LiDAR systems that demonstrates state-of-the-art performance for depth completion at low sampling rates. Our system is fully differentiable, allowing the sparse depth sampling and the depth inpainting components to be trained end-to-end with an upstream task.