{"title":"一种新的鲁棒多焦点图像融合方法","authors":"Hafiz Muhammad Tayyab Khushi","doi":"10.54692/lgurjcsit.2021.0504247","DOIUrl":null,"url":null,"abstract":"In today's digital era, multi focus picture fusion is a critical problem in the field of computational image processing. In the field of fusion information, multi-focus picture fusion has emerged as a significant research subject. The primary objective of multi focus image fusion is to merge graphical information from several images with various focus points into a single image with no information loss. We provide a robust image fusion method that can combine two or more degraded input photos into a single clear resulting output image with additional detailed information about the fused input images. The targeted item from each of the input photographs is combined to create a secondary image output. The action level quantities and the fusion rule are two key components of picture fusion, as is widely acknowledged. The activity level values are essentially implemented in either the \"spatial domain\" or the \"transform domain\" in most common fusion methods, such as wavelet. The brightness information computed from various source photos is compared to the laws developed to produce brightness / focus maps by using local filters to extract high-frequency characteristics. As a result, the focus map provides integrated clarity information, which is useful for a variety of Multi focus picture fusion problems. Image fusion with several modalities, for example. Completing these two jobs, on the other hand. As a consequence, we offer a strategy for achieving good fusion performance in this study paper. A Convolutional Neural Network (CNN) was trained on both high-quality and blurred picture patches to represent the mapping. The main advantage of this idea is that it can create a CNN model that can provide both the Activity level Measurement\" and the Fusion rule, overcoming the limitations of previous fusion procedures. Multi focus image fusion is demonstrated using microscopic images, medical imaging, computer visualization, and Image information improvement is also a benefit of multi-focus image fusion. Greater precision is necessary in terms of target detection and identification. Face recognition\" and a more compact work load, as well as enhanced system consistency, are among the new features.","PeriodicalId":197260,"journal":{"name":"Lahore Garrison University Research Journal of Computer Science and Information Technology","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Robust Multi focus image fusion Method\",\"authors\":\"Hafiz Muhammad Tayyab Khushi\",\"doi\":\"10.54692/lgurjcsit.2021.0504247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In today's digital era, multi focus picture fusion is a critical problem in the field of computational image processing. In the field of fusion information, multi-focus picture fusion has emerged as a significant research subject. The primary objective of multi focus image fusion is to merge graphical information from several images with various focus points into a single image with no information loss. We provide a robust image fusion method that can combine two or more degraded input photos into a single clear resulting output image with additional detailed information about the fused input images. The targeted item from each of the input photographs is combined to create a secondary image output. The action level quantities and the fusion rule are two key components of picture fusion, as is widely acknowledged. The activity level values are essentially implemented in either the \\\"spatial domain\\\" or the \\\"transform domain\\\" in most common fusion methods, such as wavelet. The brightness information computed from various source photos is compared to the laws developed to produce brightness / focus maps by using local filters to extract high-frequency characteristics. As a result, the focus map provides integrated clarity information, which is useful for a variety of Multi focus picture fusion problems. Image fusion with several modalities, for example. Completing these two jobs, on the other hand. As a consequence, we offer a strategy for achieving good fusion performance in this study paper. A Convolutional Neural Network (CNN) was trained on both high-quality and blurred picture patches to represent the mapping. The main advantage of this idea is that it can create a CNN model that can provide both the Activity level Measurement\\\" and the Fusion rule, overcoming the limitations of previous fusion procedures. Multi focus image fusion is demonstrated using microscopic images, medical imaging, computer visualization, and Image information improvement is also a benefit of multi-focus image fusion. Greater precision is necessary in terms of target detection and identification. Face recognition\\\" and a more compact work load, as well as enhanced system consistency, are among the new features.\",\"PeriodicalId\":197260,\"journal\":{\"name\":\"Lahore Garrison University Research Journal of Computer Science and Information Technology\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lahore Garrison University Research Journal of Computer Science and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54692/lgurjcsit.2021.0504247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lahore Garrison University Research Journal of Computer Science and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54692/lgurjcsit.2021.0504247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In today's digital era, multi focus picture fusion is a critical problem in the field of computational image processing. In the field of fusion information, multi-focus picture fusion has emerged as a significant research subject. The primary objective of multi focus image fusion is to merge graphical information from several images with various focus points into a single image with no information loss. We provide a robust image fusion method that can combine two or more degraded input photos into a single clear resulting output image with additional detailed information about the fused input images. The targeted item from each of the input photographs is combined to create a secondary image output. The action level quantities and the fusion rule are two key components of picture fusion, as is widely acknowledged. The activity level values are essentially implemented in either the "spatial domain" or the "transform domain" in most common fusion methods, such as wavelet. The brightness information computed from various source photos is compared to the laws developed to produce brightness / focus maps by using local filters to extract high-frequency characteristics. As a result, the focus map provides integrated clarity information, which is useful for a variety of Multi focus picture fusion problems. Image fusion with several modalities, for example. Completing these two jobs, on the other hand. As a consequence, we offer a strategy for achieving good fusion performance in this study paper. A Convolutional Neural Network (CNN) was trained on both high-quality and blurred picture patches to represent the mapping. The main advantage of this idea is that it can create a CNN model that can provide both the Activity level Measurement" and the Fusion rule, overcoming the limitations of previous fusion procedures. Multi focus image fusion is demonstrated using microscopic images, medical imaging, computer visualization, and Image information improvement is also a benefit of multi-focus image fusion. Greater precision is necessary in terms of target detection and identification. Face recognition" and a more compact work load, as well as enhanced system consistency, are among the new features.