多模态抑郁分类与水平检测的模型融合

AVEC '14 Pub Date : 2014-11-07 DOI:10.1145/2661806.2661819
Mohammed Senoussaoui, Milton Orlando Sarria Paja, J. F. Santos, T. Falk
{"title":"多模态抑郁分类与水平检测的模型融合","authors":"Mohammed Senoussaoui, Milton Orlando Sarria Paja, J. F. Santos, T. Falk","doi":"10.1145/2661806.2661819","DOIUrl":null,"url":null,"abstract":"Audio-visual emotion and mood disorder cues have been recently explored to develop tools to assist psychologists and psychiatrists in evaluating a patient's level of depression. In this paper, we present a number of different multimodal depression level predictors using a model fusion approach, in the context of the AVEC14 challenge. We show that an i-vector based representation for short term audio features contains useful information for depression classification and prediction. We also employed a classification step prior to regression to allow having different regression models depending on the presence or absence of depression. Our experiments show that a combination of our audio-based model and two other models based on the LGBP-TOP video features lead to an improvement of 4% over the baseline model proposed by the challenge organizers.","PeriodicalId":318508,"journal":{"name":"AVEC '14","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Model Fusion for Multimodal Depression Classification and Level Detection\",\"authors\":\"Mohammed Senoussaoui, Milton Orlando Sarria Paja, J. F. Santos, T. Falk\",\"doi\":\"10.1145/2661806.2661819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Audio-visual emotion and mood disorder cues have been recently explored to develop tools to assist psychologists and psychiatrists in evaluating a patient's level of depression. In this paper, we present a number of different multimodal depression level predictors using a model fusion approach, in the context of the AVEC14 challenge. We show that an i-vector based representation for short term audio features contains useful information for depression classification and prediction. We also employed a classification step prior to regression to allow having different regression models depending on the presence or absence of depression. Our experiments show that a combination of our audio-based model and two other models based on the LGBP-TOP video features lead to an improvement of 4% over the baseline model proposed by the challenge organizers.\",\"PeriodicalId\":318508,\"journal\":{\"name\":\"AVEC '14\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AVEC '14\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2661806.2661819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AVEC '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2661806.2661819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

摘要

视听情感和情绪障碍线索最近被用于开发工具,以帮助心理学家和精神科医生评估患者的抑郁程度。在本文中,我们在AVEC14挑战的背景下,使用模型融合方法提出了许多不同的多模态抑郁水平预测因子。我们证明了基于i向量的短期音频特征表示包含了抑郁症分类和预测的有用信息。我们还在回归之前采用了分类步骤,以允许根据抑郁的存在或不存在不同的回归模型。我们的实验表明,我们的基于音频的模型和另外两个基于lgbt - top视频特征的模型相结合,比挑战赛组织者提出的基线模型提高了4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model Fusion for Multimodal Depression Classification and Level Detection
Audio-visual emotion and mood disorder cues have been recently explored to develop tools to assist psychologists and psychiatrists in evaluating a patient's level of depression. In this paper, we present a number of different multimodal depression level predictors using a model fusion approach, in the context of the AVEC14 challenge. We show that an i-vector based representation for short term audio features contains useful information for depression classification and prediction. We also employed a classification step prior to regression to allow having different regression models depending on the presence or absence of depression. Our experiments show that a combination of our audio-based model and two other models based on the LGBP-TOP video features lead to an improvement of 4% over the baseline model proposed by the challenge organizers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信