基于压缩感知理论的平滑L0算法语音重构

Haishuang Xue, Linhui Sun, Guozhen Ou
{"title":"基于压缩感知理论的平滑L0算法语音重构","authors":"Haishuang Xue, Linhui Sun, Guozhen Ou","doi":"10.1109/WCSP.2016.7752443","DOIUrl":null,"url":null,"abstract":"At present, speech signals have good sparsity in frequency domain and discrete cosine transformation (DCT) domain etc. Therefore it can be researched based on compressed sensing (CS). CS compresses signals which are sparse or compressible at the sending end, and then reconstruct them at the receiving end. This paper proposes the compressed speech reconstruction method based smoothed L0 (SL0) algorithm. Simulation results demonstrate that the SL0 algorithm can obtain a better performance than the traditional orthogonal matching pursuit (OMP) method in reconstruction of speech signals.","PeriodicalId":158117,"journal":{"name":"2016 8th International Conference on Wireless Communications & Signal Processing (WCSP)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Speech reconstruction based on compressed sensing theory using smoothed L0 algorithm\",\"authors\":\"Haishuang Xue, Linhui Sun, Guozhen Ou\",\"doi\":\"10.1109/WCSP.2016.7752443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present, speech signals have good sparsity in frequency domain and discrete cosine transformation (DCT) domain etc. Therefore it can be researched based on compressed sensing (CS). CS compresses signals which are sparse or compressible at the sending end, and then reconstruct them at the receiving end. This paper proposes the compressed speech reconstruction method based smoothed L0 (SL0) algorithm. Simulation results demonstrate that the SL0 algorithm can obtain a better performance than the traditional orthogonal matching pursuit (OMP) method in reconstruction of speech signals.\",\"PeriodicalId\":158117,\"journal\":{\"name\":\"2016 8th International Conference on Wireless Communications & Signal Processing (WCSP)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th International Conference on Wireless Communications & Signal Processing (WCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCSP.2016.7752443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th International Conference on Wireless Communications & Signal Processing (WCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP.2016.7752443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目前,语音信号在频域和离散余弦变换(DCT)域具有良好的稀疏性。因此,可以基于压缩感知(CS)对其进行研究。CS在发送端对稀疏或可压缩的信号进行压缩,然后在接收端进行重构。提出了一种基于平滑L0 (SL0)算法的压缩语音重构方法。仿真结果表明,SL0算法在语音信号重构方面比传统的正交匹配追踪(OMP)方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speech reconstruction based on compressed sensing theory using smoothed L0 algorithm
At present, speech signals have good sparsity in frequency domain and discrete cosine transformation (DCT) domain etc. Therefore it can be researched based on compressed sensing (CS). CS compresses signals which are sparse or compressible at the sending end, and then reconstruct them at the receiving end. This paper proposes the compressed speech reconstruction method based smoothed L0 (SL0) algorithm. Simulation results demonstrate that the SL0 algorithm can obtain a better performance than the traditional orthogonal matching pursuit (OMP) method in reconstruction of speech signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信