J. Loyall, M. Gillen, Aaron M. Paulos, James R. Edmondson, Pooja Varshneya, D. Schmidt, L. Bunch, M. Carvalho, Andrew J. Martignoni
{"title":"面向服务系统中动态策略驱动的服务质量","authors":"J. Loyall, M. Gillen, Aaron M. Paulos, James R. Edmondson, Pooja Varshneya, D. Schmidt, L. Bunch, M. Carvalho, Andrew J. Martignoni","doi":"10.1109/ISORC.2010.13","DOIUrl":null,"url":null,"abstract":"Service-oriented architecture (SOA) middleware has emerged as a powerful and popular distributed computing paradigm due to its high-level abstractions for composing systems and hiding platform-level details. Control of some details hidden by SOA middleware is necessary, however, to provide managed quality of service (QoS) for SOA systems that need predictable performance and behavior. This paper presents a policy-driven approach for managing QoS in SOA systems. We discuss the design of several key QoS services and empirically evaluate their ability to provide QoS under CPU overload and bandwidth-constrained situations.","PeriodicalId":142767,"journal":{"name":"2010 13th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Dynamic Policy-Driven Quality of Service in Service-Oriented Systems\",\"authors\":\"J. Loyall, M. Gillen, Aaron M. Paulos, James R. Edmondson, Pooja Varshneya, D. Schmidt, L. Bunch, M. Carvalho, Andrew J. Martignoni\",\"doi\":\"10.1109/ISORC.2010.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Service-oriented architecture (SOA) middleware has emerged as a powerful and popular distributed computing paradigm due to its high-level abstractions for composing systems and hiding platform-level details. Control of some details hidden by SOA middleware is necessary, however, to provide managed quality of service (QoS) for SOA systems that need predictable performance and behavior. This paper presents a policy-driven approach for managing QoS in SOA systems. We discuss the design of several key QoS services and empirically evaluate their ability to provide QoS under CPU overload and bandwidth-constrained situations.\",\"PeriodicalId\":142767,\"journal\":{\"name\":\"2010 13th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 13th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISORC.2010.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISORC.2010.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic Policy-Driven Quality of Service in Service-Oriented Systems
Service-oriented architecture (SOA) middleware has emerged as a powerful and popular distributed computing paradigm due to its high-level abstractions for composing systems and hiding platform-level details. Control of some details hidden by SOA middleware is necessary, however, to provide managed quality of service (QoS) for SOA systems that need predictable performance and behavior. This paper presents a policy-driven approach for managing QoS in SOA systems. We discuss the design of several key QoS services and empirically evaluate their ability to provide QoS under CPU overload and bandwidth-constrained situations.