一种智能驱动的主动负载牵引系统

R. Saini, S. Woodington, J. Lees, J. Benedikt, P. Tasker
{"title":"一种智能驱动的主动负载牵引系统","authors":"R. Saini, S. Woodington, J. Lees, J. Benedikt, P. Tasker","doi":"10.1109/ARFTG.2010.5496327","DOIUrl":null,"url":null,"abstract":"This paper describes how the application of the PHD model can add intelligence to an open loop active loadpull system. This intelligence driven approach by providing for an improved prediction of the operating conditions required to emulate a specified load speeds up the load emulation convergence process by minimizing the number of iterations to predict the injected signal, therefore making more efficient use of a measurement system. The results were validated by carrying out loadpull measurements on the fundamental tone of a 10×75um GaAs HEMT, operating at 3 GHz.","PeriodicalId":221794,"journal":{"name":"75th ARFTG Microwave Measurement Conference","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"An intelligence driven active loadpull system\",\"authors\":\"R. Saini, S. Woodington, J. Lees, J. Benedikt, P. Tasker\",\"doi\":\"10.1109/ARFTG.2010.5496327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes how the application of the PHD model can add intelligence to an open loop active loadpull system. This intelligence driven approach by providing for an improved prediction of the operating conditions required to emulate a specified load speeds up the load emulation convergence process by minimizing the number of iterations to predict the injected signal, therefore making more efficient use of a measurement system. The results were validated by carrying out loadpull measurements on the fundamental tone of a 10×75um GaAs HEMT, operating at 3 GHz.\",\"PeriodicalId\":221794,\"journal\":{\"name\":\"75th ARFTG Microwave Measurement Conference\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"75th ARFTG Microwave Measurement Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARFTG.2010.5496327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"75th ARFTG Microwave Measurement Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARFTG.2010.5496327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文描述了如何应用PHD模型来增加开环主动负载牵引系统的智能化。这种智能驱动的方法通过提供对模拟特定负载所需的操作条件的改进预测,通过最小化预测注入信号的迭代次数,加快了负载仿真收敛过程,从而更有效地利用了测量系统。通过对工作在3ghz的10×75um GaAs HEMT的基频进行负载拉测量,验证了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An intelligence driven active loadpull system
This paper describes how the application of the PHD model can add intelligence to an open loop active loadpull system. This intelligence driven approach by providing for an improved prediction of the operating conditions required to emulate a specified load speeds up the load emulation convergence process by minimizing the number of iterations to predict the injected signal, therefore making more efficient use of a measurement system. The results were validated by carrying out loadpull measurements on the fundamental tone of a 10×75um GaAs HEMT, operating at 3 GHz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信