{"title":"近积分非高斯模型的最优与鲁棒推理","authors":"S. B. Thompson","doi":"10.2139/ssrn.399000","DOIUrl":null,"url":null,"abstract":"Elliott, Rothenberg and Stock (1996) derived a class of point-optimal unit root tests in a time series model with Gaussian errors. Other authors have proposed \"robust\" tests which are not optimal for any model but perform well when the error distribution has thick tails. I derive a class of point-optimal tests for models with non Gaussian errors. When the true error distribution is known and has thick tails, the point-optimal tests are generally more powerful than Elliott et al.'s (1996) tests as well as the robust tests. However, when the true error distribution is unknown and asymmetric, the point-optimal tests can behave very badly. Thus there is a tradeoff between robustness to unknown error distributions and optimality with respect to the trend coefficients.","PeriodicalId":221813,"journal":{"name":"Harvard Economics Department Working Paper Series","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Optimal Versus Robust Inference in Nearly Integrated Non Gaussian Models\",\"authors\":\"S. B. Thompson\",\"doi\":\"10.2139/ssrn.399000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Elliott, Rothenberg and Stock (1996) derived a class of point-optimal unit root tests in a time series model with Gaussian errors. Other authors have proposed \\\"robust\\\" tests which are not optimal for any model but perform well when the error distribution has thick tails. I derive a class of point-optimal tests for models with non Gaussian errors. When the true error distribution is known and has thick tails, the point-optimal tests are generally more powerful than Elliott et al.'s (1996) tests as well as the robust tests. However, when the true error distribution is unknown and asymmetric, the point-optimal tests can behave very badly. Thus there is a tradeoff between robustness to unknown error distributions and optimality with respect to the trend coefficients.\",\"PeriodicalId\":221813,\"journal\":{\"name\":\"Harvard Economics Department Working Paper Series\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Harvard Economics Department Working Paper Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.399000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Harvard Economics Department Working Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.399000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal Versus Robust Inference in Nearly Integrated Non Gaussian Models
Elliott, Rothenberg and Stock (1996) derived a class of point-optimal unit root tests in a time series model with Gaussian errors. Other authors have proposed "robust" tests which are not optimal for any model but perform well when the error distribution has thick tails. I derive a class of point-optimal tests for models with non Gaussian errors. When the true error distribution is known and has thick tails, the point-optimal tests are generally more powerful than Elliott et al.'s (1996) tests as well as the robust tests. However, when the true error distribution is unknown and asymmetric, the point-optimal tests can behave very badly. Thus there is a tradeoff between robustness to unknown error distributions and optimality with respect to the trend coefficients.