一种新的TSP蚁群优化算法种群规模初始化策略

Fanzhen Liu, Jiaqi Zhong, Chen Liu, Chao Gao, Xianghua Li
{"title":"一种新的TSP蚁群优化算法种群规模初始化策略","authors":"Fanzhen Liu, Jiaqi Zhong, Chen Liu, Chao Gao, Xianghua Li","doi":"10.1109/FSKD.2017.8393166","DOIUrl":null,"url":null,"abstract":"The ant colony optimization (ACO) algorithm belonging to swarm intelligence methods has been used to solve quantities of optimization problems. Among those problem, the travelling salesman problem (TSP) is a very essential application of ACO algorithm, which displays the great ability of ACO algorithm to find short paths through graphs. However, the existing ant colony optimization algorithms still perform a low efficiency in solving TSP within a limited time. In order to overcome these shortcomings, a hypothesis about initializing the population size for ACO algorithms is put forward, based on the analysis of the relationship among the initial number of ant, the average optimal solution and the computational cost. Furthermore, some experiments are implemented in six datasets, and the results prove that the hypothesis is reasonable and reveal that the initial population size is relevant to the number of cities in a dataset. Based on the hypothesis, this paper proposes a novel strategy of initializing the number of ants for ACO algorithms in TSP, so that the relative high-quality optimal solutions can be obtained within a short time.","PeriodicalId":236093,"journal":{"name":"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A novel strategy of initializing the population size for ant colony optimization algorithms in TSP\",\"authors\":\"Fanzhen Liu, Jiaqi Zhong, Chen Liu, Chao Gao, Xianghua Li\",\"doi\":\"10.1109/FSKD.2017.8393166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ant colony optimization (ACO) algorithm belonging to swarm intelligence methods has been used to solve quantities of optimization problems. Among those problem, the travelling salesman problem (TSP) is a very essential application of ACO algorithm, which displays the great ability of ACO algorithm to find short paths through graphs. However, the existing ant colony optimization algorithms still perform a low efficiency in solving TSP within a limited time. In order to overcome these shortcomings, a hypothesis about initializing the population size for ACO algorithms is put forward, based on the analysis of the relationship among the initial number of ant, the average optimal solution and the computational cost. Furthermore, some experiments are implemented in six datasets, and the results prove that the hypothesis is reasonable and reveal that the initial population size is relevant to the number of cities in a dataset. Based on the hypothesis, this paper proposes a novel strategy of initializing the number of ants for ACO algorithms in TSP, so that the relative high-quality optimal solutions can be obtained within a short time.\",\"PeriodicalId\":236093,\"journal\":{\"name\":\"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FSKD.2017.8393166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2017.8393166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

蚁群优化算法属于群体智能方法的一种,已被用于解决大量的优化问题。其中,旅行商问题(TSP)是蚁群算法的一个非常重要的应用,它显示了蚁群算法在图中寻找短路径的强大能力。然而,现有的蚁群优化算法在有限时间内求解TSP的效率仍然很低。为了克服这些缺点,在分析蚁群算法初始蚁数、平均最优解和计算代价之间关系的基础上,提出了蚁群算法初始化蚁群大小的假设。此外,在6个数据集上进行了实验,结果证明了假设的合理性,并揭示了初始人口规模与数据集中的城市数量相关。在此假设的基础上,提出了一种新的蚁群算法初始化蚁群数量的策略,使蚁群算法在较短的时间内获得相对高质量的最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel strategy of initializing the population size for ant colony optimization algorithms in TSP
The ant colony optimization (ACO) algorithm belonging to swarm intelligence methods has been used to solve quantities of optimization problems. Among those problem, the travelling salesman problem (TSP) is a very essential application of ACO algorithm, which displays the great ability of ACO algorithm to find short paths through graphs. However, the existing ant colony optimization algorithms still perform a low efficiency in solving TSP within a limited time. In order to overcome these shortcomings, a hypothesis about initializing the population size for ACO algorithms is put forward, based on the analysis of the relationship among the initial number of ant, the average optimal solution and the computational cost. Furthermore, some experiments are implemented in six datasets, and the results prove that the hypothesis is reasonable and reveal that the initial population size is relevant to the number of cities in a dataset. Based on the hypothesis, this paper proposes a novel strategy of initializing the number of ants for ACO algorithms in TSP, so that the relative high-quality optimal solutions can be obtained within a short time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信