利用GAC和先验分析对连续超薄电镜切片进行标记细胞结构的轮廓检测

Huaizhong Zhang, P. Morrow, Sally I. McClean, K. Saetzler
{"title":"利用GAC和先验分析对连续超薄电镜切片进行标记细胞结构的轮廓检测","authors":"Huaizhong Zhang, P. Morrow, Sally I. McClean, K. Saetzler","doi":"10.1109/IPTA.2008.4743746","DOIUrl":null,"url":null,"abstract":"In this paper we discuss how the classical geodesic active contours (GAC) model is enhanced by incorporating `prior' information into the scheme. The modified model is applied to biomedical imagery, specifically serial ultrathin electron microscopy sections. The approach used is to apply prior analysis on a training set of data and provide geometric information about the target object during the process of curve evolution. The experimental results and analysis for both synthetic and real images show that the approach performs better than our previous method. It can be implemented semi-automated fashion giving significant improvements compared to a manual approach.","PeriodicalId":384072,"journal":{"name":"2008 First Workshops on Image Processing Theory, Tools and Applications","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Contour Detection of Labelled Cellular Structures from Serial Ultrathin Electron Microscopy Sections using GAC and Prior Analysis\",\"authors\":\"Huaizhong Zhang, P. Morrow, Sally I. McClean, K. Saetzler\",\"doi\":\"10.1109/IPTA.2008.4743746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we discuss how the classical geodesic active contours (GAC) model is enhanced by incorporating `prior' information into the scheme. The modified model is applied to biomedical imagery, specifically serial ultrathin electron microscopy sections. The approach used is to apply prior analysis on a training set of data and provide geometric information about the target object during the process of curve evolution. The experimental results and analysis for both synthetic and real images show that the approach performs better than our previous method. It can be implemented semi-automated fashion giving significant improvements compared to a manual approach.\",\"PeriodicalId\":384072,\"journal\":{\"name\":\"2008 First Workshops on Image Processing Theory, Tools and Applications\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 First Workshops on Image Processing Theory, Tools and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2008.4743746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 First Workshops on Image Processing Theory, Tools and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2008.4743746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们讨论了如何通过将“先验”信息纳入方案来增强经典的测地线活动轮廓(GAC)模型。改进后的模型应用于生物医学图像,特别是连续超薄电镜切片。该方法是对训练数据集进行先验分析,并在曲线演化过程中提供目标物体的几何信息。实验结果和对合成图像和真实图像的分析表明,该方法比我们以前的方法具有更好的性能。它可以实现半自动化的方式,与手动方法相比有显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contour Detection of Labelled Cellular Structures from Serial Ultrathin Electron Microscopy Sections using GAC and Prior Analysis
In this paper we discuss how the classical geodesic active contours (GAC) model is enhanced by incorporating `prior' information into the scheme. The modified model is applied to biomedical imagery, specifically serial ultrathin electron microscopy sections. The approach used is to apply prior analysis on a training set of data and provide geometric information about the target object during the process of curve evolution. The experimental results and analysis for both synthetic and real images show that the approach performs better than our previous method. It can be implemented semi-automated fashion giving significant improvements compared to a manual approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信