{"title":"超过6 GHz的5G候选频谱:雅加达环境的模拟","authors":"Ahmad Salaam Mirfananda, M. Suryanegara","doi":"10.1109/TENCONSPRING.2016.7519373","DOIUrl":null,"url":null,"abstract":"Various researches on how to improve the current cellular system have been done to be implemented in future cellular technology, often called 5G. One of the aspects of researches focuses on the frequency spectrum that will be used on the next generation of cellular system. The frequency spectrum became a focus due to the prediction that the current frequency spectrum will not suffice to accommodate the amount of traffic that 5G will handle. The frequency spectrum that is predicted to replace the current frequency spectrum in the future is located beyond 6 GHz with 28 GHz, 38 GHz, and 73 GHz as a few examples of those candidates. Although these spectrums are considered as potential frequency spectrum candidate supporting 5G, site specific planning will become an important focus where the transmission performance will heavily rely on the location where the network is implemented. This paper discusses the computational simulation of a few frequency spectrum candidates when implemented in the environment of Jakarta and considers the propagation losses that will occur during the transmission process. The impact of spectrum candidate implementation to coverage is also simulated and observed. Simulation results show that attenuation due to building penetration is the most significant loss of others. Vegetation attenuation will also have significant impact towards the transmission. Whereas rain and gaseous attenuation will show little significance compared to other propagation losses.","PeriodicalId":166275,"journal":{"name":"2016 IEEE Region 10 Symposium (TENSYMP)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"5G spectrum candidates beyond 6 GHz: A simulation of Jakarta environment\",\"authors\":\"Ahmad Salaam Mirfananda, M. Suryanegara\",\"doi\":\"10.1109/TENCONSPRING.2016.7519373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various researches on how to improve the current cellular system have been done to be implemented in future cellular technology, often called 5G. One of the aspects of researches focuses on the frequency spectrum that will be used on the next generation of cellular system. The frequency spectrum became a focus due to the prediction that the current frequency spectrum will not suffice to accommodate the amount of traffic that 5G will handle. The frequency spectrum that is predicted to replace the current frequency spectrum in the future is located beyond 6 GHz with 28 GHz, 38 GHz, and 73 GHz as a few examples of those candidates. Although these spectrums are considered as potential frequency spectrum candidate supporting 5G, site specific planning will become an important focus where the transmission performance will heavily rely on the location where the network is implemented. This paper discusses the computational simulation of a few frequency spectrum candidates when implemented in the environment of Jakarta and considers the propagation losses that will occur during the transmission process. The impact of spectrum candidate implementation to coverage is also simulated and observed. Simulation results show that attenuation due to building penetration is the most significant loss of others. Vegetation attenuation will also have significant impact towards the transmission. Whereas rain and gaseous attenuation will show little significance compared to other propagation losses.\",\"PeriodicalId\":166275,\"journal\":{\"name\":\"2016 IEEE Region 10 Symposium (TENSYMP)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Region 10 Symposium (TENSYMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCONSPRING.2016.7519373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCONSPRING.2016.7519373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
5G spectrum candidates beyond 6 GHz: A simulation of Jakarta environment
Various researches on how to improve the current cellular system have been done to be implemented in future cellular technology, often called 5G. One of the aspects of researches focuses on the frequency spectrum that will be used on the next generation of cellular system. The frequency spectrum became a focus due to the prediction that the current frequency spectrum will not suffice to accommodate the amount of traffic that 5G will handle. The frequency spectrum that is predicted to replace the current frequency spectrum in the future is located beyond 6 GHz with 28 GHz, 38 GHz, and 73 GHz as a few examples of those candidates. Although these spectrums are considered as potential frequency spectrum candidate supporting 5G, site specific planning will become an important focus where the transmission performance will heavily rely on the location where the network is implemented. This paper discusses the computational simulation of a few frequency spectrum candidates when implemented in the environment of Jakarta and considers the propagation losses that will occur during the transmission process. The impact of spectrum candidate implementation to coverage is also simulated and observed. Simulation results show that attenuation due to building penetration is the most significant loss of others. Vegetation attenuation will also have significant impact towards the transmission. Whereas rain and gaseous attenuation will show little significance compared to other propagation losses.