航空延误预测的时空数据挖掘

Kai Zhang, Yushan Jiang, Dahai Liu, H. Song
{"title":"航空延误预测的时空数据挖掘","authors":"Kai Zhang, Yushan Jiang, Dahai Liu, H. Song","doi":"10.1109/IPCCC50635.2020.9391561","DOIUrl":null,"url":null,"abstract":"To accommodate the unprecedented increase of commercial airlines over the next ten years, the Next Generation Air Transportation System (NextGen) has been implemented in the USA that records large-scale Air Traffic Management (ATM) data to make air travel safer, more efficient, and more economical. A key role of collaborative decision making for air traffic scheduling and airspace resource management is the accurate prediction of flight delay. There has been a lot of attempts to apply data-driven methods such as machine learning to forecast flight delay situation using air traffic data of departures and arrivals. However, most of them omit en-route spatial information of airlines and temporal correlation between serial flights which results in inaccuracy prediction. In this paper, we present a novel aviation delay prediction system based on stacked Long Short-Term Memory (LSTM) networks for commercial flights. The system learns from historical trajectories from automatic dependent surveillance-broadcast (ADS-B) messages and uses the correlative geolocations to collect indispensable features such as climatic elements, air traffic, airspace, and human factors data along posterior routes. These features are integrated and then are fed into our proposed regression model. The latent spatio-temporal patterns of data are abstracted and learned in the LSTM architecture. Compared with previous schemes, our approach is demonstrated to be more robust and accurate for large hub airports.","PeriodicalId":226034,"journal":{"name":"2020 IEEE 39th International Performance Computing and Communications Conference (IPCCC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Spatio-Temporal Data Mining for Aviation Delay Prediction\",\"authors\":\"Kai Zhang, Yushan Jiang, Dahai Liu, H. Song\",\"doi\":\"10.1109/IPCCC50635.2020.9391561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To accommodate the unprecedented increase of commercial airlines over the next ten years, the Next Generation Air Transportation System (NextGen) has been implemented in the USA that records large-scale Air Traffic Management (ATM) data to make air travel safer, more efficient, and more economical. A key role of collaborative decision making for air traffic scheduling and airspace resource management is the accurate prediction of flight delay. There has been a lot of attempts to apply data-driven methods such as machine learning to forecast flight delay situation using air traffic data of departures and arrivals. However, most of them omit en-route spatial information of airlines and temporal correlation between serial flights which results in inaccuracy prediction. In this paper, we present a novel aviation delay prediction system based on stacked Long Short-Term Memory (LSTM) networks for commercial flights. The system learns from historical trajectories from automatic dependent surveillance-broadcast (ADS-B) messages and uses the correlative geolocations to collect indispensable features such as climatic elements, air traffic, airspace, and human factors data along posterior routes. These features are integrated and then are fed into our proposed regression model. The latent spatio-temporal patterns of data are abstracted and learned in the LSTM architecture. Compared with previous schemes, our approach is demonstrated to be more robust and accurate for large hub airports.\",\"PeriodicalId\":226034,\"journal\":{\"name\":\"2020 IEEE 39th International Performance Computing and Communications Conference (IPCCC)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 39th International Performance Computing and Communications Conference (IPCCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPCCC50635.2020.9391561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 39th International Performance Computing and Communications Conference (IPCCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPCCC50635.2020.9391561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

为了适应未来十年商业航空公司前所未有的增长,下一代航空运输系统(NextGen)已在美国实施,该系统记录大规模空中交通管理(ATM)数据,以使航空旅行更安全,更高效,更经济。准确预测航班延误是空中交通调度和空域资源管理协同决策的关键。有很多尝试应用数据驱动的方法,如机器学习,利用起飞和到达的空中交通数据来预测航班延误情况。然而,它们大多忽略了航线的空间信息和序列航班之间的时间相关性,导致预测不准确。本文提出了一种基于堆叠长短期记忆(LSTM)网络的商业航班航班延误预测系统。该系统从自动相关监视广播(ADS-B)信息的历史轨迹中学习,并利用相关的地理位置收集必不可少的特征,如气候要素、空中交通、空域和人为因素数据。这些特征被整合到我们提出的回归模型中。在LSTM体系结构中对数据的潜在时空模式进行抽象和学习。与以前的方案相比,我们的方法对大型枢纽机场具有更强的鲁棒性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatio-Temporal Data Mining for Aviation Delay Prediction
To accommodate the unprecedented increase of commercial airlines over the next ten years, the Next Generation Air Transportation System (NextGen) has been implemented in the USA that records large-scale Air Traffic Management (ATM) data to make air travel safer, more efficient, and more economical. A key role of collaborative decision making for air traffic scheduling and airspace resource management is the accurate prediction of flight delay. There has been a lot of attempts to apply data-driven methods such as machine learning to forecast flight delay situation using air traffic data of departures and arrivals. However, most of them omit en-route spatial information of airlines and temporal correlation between serial flights which results in inaccuracy prediction. In this paper, we present a novel aviation delay prediction system based on stacked Long Short-Term Memory (LSTM) networks for commercial flights. The system learns from historical trajectories from automatic dependent surveillance-broadcast (ADS-B) messages and uses the correlative geolocations to collect indispensable features such as climatic elements, air traffic, airspace, and human factors data along posterior routes. These features are integrated and then are fed into our proposed regression model. The latent spatio-temporal patterns of data are abstracted and learned in the LSTM architecture. Compared with previous schemes, our approach is demonstrated to be more robust and accurate for large hub airports.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信