整合不同标准的讽刺语言数据集进行讽刺检测

Shih-Hung Wu, Xie-Sheng Hong
{"title":"整合不同标准的讽刺语言数据集进行讽刺检测","authors":"Shih-Hung Wu, Xie-Sheng Hong","doi":"10.1109/IRI58017.2023.00022","DOIUrl":null,"url":null,"abstract":"Sarcastic language is a special kind of figurative language that involve misperception in the text. The ambiguity and specificity of sarcastic language affects the tasks related to natural language processing and sentiment analysis. These properties make sarcasm detection an important challenge. Different datasets give very different standard on sarcasm. In this paper, we study the “generalizability” of sarcastic datasets. We compare six sarcastic datasets annotated by different research teams. Based on the classification model trained by RoBERTa to investigate the generalizability among the datasets.","PeriodicalId":290818,"journal":{"name":"2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating Sarcastic Language Datasets in Various Standards for Sarcasm Detection\",\"authors\":\"Shih-Hung Wu, Xie-Sheng Hong\",\"doi\":\"10.1109/IRI58017.2023.00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sarcastic language is a special kind of figurative language that involve misperception in the text. The ambiguity and specificity of sarcastic language affects the tasks related to natural language processing and sentiment analysis. These properties make sarcasm detection an important challenge. Different datasets give very different standard on sarcasm. In this paper, we study the “generalizability” of sarcastic datasets. We compare six sarcastic datasets annotated by different research teams. Based on the classification model trained by RoBERTa to investigate the generalizability among the datasets.\",\"PeriodicalId\":290818,\"journal\":{\"name\":\"2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI58017.2023.00022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI58017.2023.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

讽刺语是一种特殊的比喻性语言,在语篇中存在误解。讽刺语的模糊性和特殊性影响了自然语言处理和情感分析的相关任务。这些特性使得讽刺检测成为一个重要的挑战。不同的数据集给出了非常不同的讽刺标准。本文研究了讽刺数据集的“可泛化性”。我们比较了由不同研究团队注释的六个讽刺数据集。基于RoBERTa训练的分类模型,研究数据集之间的泛化性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating Sarcastic Language Datasets in Various Standards for Sarcasm Detection
Sarcastic language is a special kind of figurative language that involve misperception in the text. The ambiguity and specificity of sarcastic language affects the tasks related to natural language processing and sentiment analysis. These properties make sarcasm detection an important challenge. Different datasets give very different standard on sarcasm. In this paper, we study the “generalizability” of sarcastic datasets. We compare six sarcastic datasets annotated by different research teams. Based on the classification model trained by RoBERTa to investigate the generalizability among the datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信