参数三次样条插值曲线的快速生成算法

Jian-ao Lian
{"title":"参数三次样条插值曲线的快速生成算法","authors":"Jian-ao Lian","doi":"10.36227/techrxiv.19154132","DOIUrl":null,"url":null,"abstract":"For any two or three dimensional dataset given as an open or closed piecewise linear function, two algorithms are established for constructing G1 and G2 parametric cubic splines that interpolate the given dataset. These algorithms do not require any additional tangent direction information at each datapoint or any boundary conditions. One algorithm is specif-ically formulated for the unique local least square parametric cubic spline interpolation, so that a given dataset can be best approximated through appropriately defined local least squares approximation. Simple examples will be used to illustrate the algorithms and various datasets will also be demonstrated to show the efficiency of the algorithms.","PeriodicalId":273927,"journal":{"name":"2022 5th International Conference on Information and Computer Technologies (ICICT)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Algorithms for Generating Parametric Cubic Spline Interpolation Curves\",\"authors\":\"Jian-ao Lian\",\"doi\":\"10.36227/techrxiv.19154132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any two or three dimensional dataset given as an open or closed piecewise linear function, two algorithms are established for constructing G1 and G2 parametric cubic splines that interpolate the given dataset. These algorithms do not require any additional tangent direction information at each datapoint or any boundary conditions. One algorithm is specif-ically formulated for the unique local least square parametric cubic spline interpolation, so that a given dataset can be best approximated through appropriately defined local least squares approximation. Simple examples will be used to illustrate the algorithms and various datasets will also be demonstrated to show the efficiency of the algorithms.\",\"PeriodicalId\":273927,\"journal\":{\"name\":\"2022 5th International Conference on Information and Computer Technologies (ICICT)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th International Conference on Information and Computer Technologies (ICICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36227/techrxiv.19154132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Information and Computer Technologies (ICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36227/techrxiv.19154132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于任意以开放或封闭分段线性函数形式给出的二维或三维数据集,建立了两种算法来构造G1和G2参数三次样条插值给定数据集。这些算法不需要任何额外的切线方向信息在每个数据点或任何边界条件。针对唯一的局部最小二乘参数三次样条插值,提出了一种算法,使给定的数据集可以通过适当定义的局部最小二乘近似得到最佳逼近。将使用简单的示例来说明算法,并演示各种数据集以显示算法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Algorithms for Generating Parametric Cubic Spline Interpolation Curves
For any two or three dimensional dataset given as an open or closed piecewise linear function, two algorithms are established for constructing G1 and G2 parametric cubic splines that interpolate the given dataset. These algorithms do not require any additional tangent direction information at each datapoint or any boundary conditions. One algorithm is specif-ically formulated for the unique local least square parametric cubic spline interpolation, so that a given dataset can be best approximated through appropriately defined local least squares approximation. Simple examples will be used to illustrate the algorithms and various datasets will also be demonstrated to show the efficiency of the algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信