A. Athavale, D. Reigosa, K. Akatsu, K. Sakai, R. Lorenz
{"title":"电动汽车牵引电机系统可变磁通永磁电机的可扩展性和关键权衡","authors":"A. Athavale, D. Reigosa, K. Akatsu, K. Sakai, R. Lorenz","doi":"10.1109/ECCE.2018.8558007","DOIUrl":null,"url":null,"abstract":"Methodologies for the design and control of variable flux permanent magnet synchronous machines (VF-PMSMs) to meet electric vehicle traction requirements with significantly reduced driving cycle losses have been proposed recently. The effectiveness of the proposed methods was demonstrated by a systematic design based on finite element analysis (FEA) and experimental driving cycle loss evaluation of a full scale VF-PMSM prototype. In this paper, simplified analytical models are developed to estimate the properties and key performance metrics of VF-PMSMs across a range of power and are verified using FEA. Fundamental tradeoffs between the normalized high-speed power capability and the range of magnetization state $(\\boldsymbol{M}\\boldsymbol{S})$ variation are identified. The relationship between $\\boldsymbol{M}\\boldsymbol{S}$ variation range and driving cycle loss reduction is evaluated quantitatively across the design space. A detailed analysis of the scalability of VF-PMSMs including loss reduction capability and system cost (including active materials in the machine, inverter power electronics, and battery cost) is presented.","PeriodicalId":415217,"journal":{"name":"2018 IEEE Energy Conversion Congress and Exposition (ECCE)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Scalability and Key Tradeoffs of Variable Flux PM Machines for EV Traction Motor Systems\",\"authors\":\"A. Athavale, D. Reigosa, K. Akatsu, K. Sakai, R. Lorenz\",\"doi\":\"10.1109/ECCE.2018.8558007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Methodologies for the design and control of variable flux permanent magnet synchronous machines (VF-PMSMs) to meet electric vehicle traction requirements with significantly reduced driving cycle losses have been proposed recently. The effectiveness of the proposed methods was demonstrated by a systematic design based on finite element analysis (FEA) and experimental driving cycle loss evaluation of a full scale VF-PMSM prototype. In this paper, simplified analytical models are developed to estimate the properties and key performance metrics of VF-PMSMs across a range of power and are verified using FEA. Fundamental tradeoffs between the normalized high-speed power capability and the range of magnetization state $(\\\\boldsymbol{M}\\\\boldsymbol{S})$ variation are identified. The relationship between $\\\\boldsymbol{M}\\\\boldsymbol{S}$ variation range and driving cycle loss reduction is evaluated quantitatively across the design space. A detailed analysis of the scalability of VF-PMSMs including loss reduction capability and system cost (including active materials in the machine, inverter power electronics, and battery cost) is presented.\",\"PeriodicalId\":415217,\"journal\":{\"name\":\"2018 IEEE Energy Conversion Congress and Exposition (ECCE)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Energy Conversion Congress and Exposition (ECCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCE.2018.8558007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Energy Conversion Congress and Exposition (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE.2018.8558007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scalability and Key Tradeoffs of Variable Flux PM Machines for EV Traction Motor Systems
Methodologies for the design and control of variable flux permanent magnet synchronous machines (VF-PMSMs) to meet electric vehicle traction requirements with significantly reduced driving cycle losses have been proposed recently. The effectiveness of the proposed methods was demonstrated by a systematic design based on finite element analysis (FEA) and experimental driving cycle loss evaluation of a full scale VF-PMSM prototype. In this paper, simplified analytical models are developed to estimate the properties and key performance metrics of VF-PMSMs across a range of power and are verified using FEA. Fundamental tradeoffs between the normalized high-speed power capability and the range of magnetization state $(\boldsymbol{M}\boldsymbol{S})$ variation are identified. The relationship between $\boldsymbol{M}\boldsymbol{S}$ variation range and driving cycle loss reduction is evaluated quantitatively across the design space. A detailed analysis of the scalability of VF-PMSMs including loss reduction capability and system cost (including active materials in the machine, inverter power electronics, and battery cost) is presented.