求任意函数最小值的结果下降法

ACM '59 Pub Date : 1959-09-01 DOI:10.1145/612201.612286
R. Finkel
{"title":"求任意函数最小值的结果下降法","authors":"R. Finkel","doi":"10.1145/612201.612286","DOIUrl":null,"url":null,"abstract":"This paper introduces a method for minimization of algebraic and transcendental equations which is more rapidly convergent on nearly quadratic surfaces than the \"steepest descents\" methods described by Lance and entails significantly fewer computations than the method of \"mixed descents\" described by Guier, (although mixed descents may converge more rapidly for some problems). With minor modifications, the method applies equally well to the maximization of a function.","PeriodicalId":109454,"journal":{"name":"ACM '59","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1959-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The method of resultant descents for the minimization of an arbitrary function\",\"authors\":\"R. Finkel\",\"doi\":\"10.1145/612201.612286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a method for minimization of algebraic and transcendental equations which is more rapidly convergent on nearly quadratic surfaces than the \\\"steepest descents\\\" methods described by Lance and entails significantly fewer computations than the method of \\\"mixed descents\\\" described by Guier, (although mixed descents may converge more rapidly for some problems). With minor modifications, the method applies equally well to the maximization of a function.\",\"PeriodicalId\":109454,\"journal\":{\"name\":\"ACM '59\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1959-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM '59\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/612201.612286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM '59","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/612201.612286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文介绍了一种代数和超越方程的最小化方法,它比Lance描述的“最陡下降”方法在近二次曲面上收敛得更快,并且比Guier描述的“混合下降”方法所需要的计算量要少得多(尽管混合下降可能对某些问题收敛得更快)。稍加修改,该方法同样适用于函数的最大化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The method of resultant descents for the minimization of an arbitrary function
This paper introduces a method for minimization of algebraic and transcendental equations which is more rapidly convergent on nearly quadratic surfaces than the "steepest descents" methods described by Lance and entails significantly fewer computations than the method of "mixed descents" described by Guier, (although mixed descents may converge more rapidly for some problems). With minor modifications, the method applies equally well to the maximization of a function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信