模式的提升

Jitendra Bajpai
{"title":"模式的提升","authors":"Jitendra Bajpai","doi":"10.5802/pmb.27","DOIUrl":null,"url":null,"abstract":"The existence and construction of vector-valued modular forms (vvmf) for any arbitrary Fuchsian group $\\mathrm{G}$, for any representation $\\rho:\\mathrm{G} \\longrightarrow \\mathrm{GL}_{d}(\\mathbb{C})$ of finite image can be established by lifting scalar-valued modular forms of the finite index subgroup $Ker(\\rho)$ of $\\mathrm{G}$. In this article vvmf are explicitly constructed for any admissible multiplier (representation) $\\rho$, see Section 3 for the definition of admissible multiplier. In other words, the following question has been partially answered: For which representations $\\rho$ of a given $\\mathrm{G}$, is there a vvmf with at least one nonzero component ?","PeriodicalId":194637,"journal":{"name":"Publications Mathématiques de Besançon","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Lifting of Modular Forms\",\"authors\":\"Jitendra Bajpai\",\"doi\":\"10.5802/pmb.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existence and construction of vector-valued modular forms (vvmf) for any arbitrary Fuchsian group $\\\\mathrm{G}$, for any representation $\\\\rho:\\\\mathrm{G} \\\\longrightarrow \\\\mathrm{GL}_{d}(\\\\mathbb{C})$ of finite image can be established by lifting scalar-valued modular forms of the finite index subgroup $Ker(\\\\rho)$ of $\\\\mathrm{G}$. In this article vvmf are explicitly constructed for any admissible multiplier (representation) $\\\\rho$, see Section 3 for the definition of admissible multiplier. In other words, the following question has been partially answered: For which representations $\\\\rho$ of a given $\\\\mathrm{G}$, is there a vvmf with at least one nonzero component ?\",\"PeriodicalId\":194637,\"journal\":{\"name\":\"Publications Mathématiques de Besançon\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications Mathématiques de Besançon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/pmb.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications Mathématiques de Besançon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/pmb.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

对于任意Fuchsian群$\ mathm {G}$,对于有限象的任意表示$\rho:\ mathm {G} \ longightarrow \ mathm {GL}_{d}(\mathbb{C})$,可以通过提升$\ mathm {G}$的有限索引子群$Ker(\rho)$的标量模形式来建立向量值模形式(vvmf)的存在性和构造性。在本文中,vvmf是为任何可允许的乘数(表示)$\rho$显式构造的,有关可允许的乘数的定义,请参阅第3节。换句话说,以下问题得到了部分回答:对于给定的$\ mathm {G}$的哪些表示$\rho$,是否存在至少具有一个非零分量的vvmf ?
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lifting of Modular Forms
The existence and construction of vector-valued modular forms (vvmf) for any arbitrary Fuchsian group $\mathrm{G}$, for any representation $\rho:\mathrm{G} \longrightarrow \mathrm{GL}_{d}(\mathbb{C})$ of finite image can be established by lifting scalar-valued modular forms of the finite index subgroup $Ker(\rho)$ of $\mathrm{G}$. In this article vvmf are explicitly constructed for any admissible multiplier (representation) $\rho$, see Section 3 for the definition of admissible multiplier. In other words, the following question has been partially answered: For which representations $\rho$ of a given $\mathrm{G}$, is there a vvmf with at least one nonzero component ?
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信