{"title":"基于终端成本函数的状态估计最优调度","authors":"C.O. Savage, B. L. Scala, W. Moran","doi":"10.1109/ICIF.2006.301677","DOIUrl":null,"url":null,"abstract":"In this paper we consider state estimation problems where there are multiple independent processes evolving but the estimation scheme can only select a limited set of processes to measure at each time step. Within a Gauss-Markov framework, we show the optimality of a scheduling scheme under various scenarios. These types of problems are common in sensor scheduling applications","PeriodicalId":248061,"journal":{"name":"2006 9th International Conference on Information Fusion","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimal Scheduling for State Estimation Using a Terminal Cost Function\",\"authors\":\"C.O. Savage, B. L. Scala, W. Moran\",\"doi\":\"10.1109/ICIF.2006.301677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider state estimation problems where there are multiple independent processes evolving but the estimation scheme can only select a limited set of processes to measure at each time step. Within a Gauss-Markov framework, we show the optimality of a scheduling scheme under various scenarios. These types of problems are common in sensor scheduling applications\",\"PeriodicalId\":248061,\"journal\":{\"name\":\"2006 9th International Conference on Information Fusion\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 9th International Conference on Information Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2006.301677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 9th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2006.301677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal Scheduling for State Estimation Using a Terminal Cost Function
In this paper we consider state estimation problems where there are multiple independent processes evolving but the estimation scheme can only select a limited set of processes to measure at each time step. Within a Gauss-Markov framework, we show the optimality of a scheduling scheme under various scenarios. These types of problems are common in sensor scheduling applications