情感分析的语义网络方法:以抑郁症为例

Rekha Sugandhi, A. Mahajan
{"title":"情感分析的语义网络方法:以抑郁症为例","authors":"Rekha Sugandhi, A. Mahajan","doi":"10.1109/ICISIM.2017.8122182","DOIUrl":null,"url":null,"abstract":"This paper discusses the semantic network approach to identify affects in natural language input and focusses on representing spatio-temporal affect information. It has been observed that this approach performs better in analysis of affect information that can be effectively utilized for the prognosis of human cognitive behavior. The research work in this paper describes a new approach towards simple representation of multi-dimensional affect data that facilitates the provision of emotions or affects with varying granularity. The analysis algorithm thus executed on the semantic representation generates temporally significant behavior patterns. The analysis of the semantic network generates temporally significant behavior patterns. The framework has been designed to be extensible over a wide variety of applications in cognitive computing.","PeriodicalId":139000,"journal":{"name":"2017 1st International Conference on Intelligent Systems and Information Management (ICISIM)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A semantic network approach to affect analysis: A case study on depression\",\"authors\":\"Rekha Sugandhi, A. Mahajan\",\"doi\":\"10.1109/ICISIM.2017.8122182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the semantic network approach to identify affects in natural language input and focusses on representing spatio-temporal affect information. It has been observed that this approach performs better in analysis of affect information that can be effectively utilized for the prognosis of human cognitive behavior. The research work in this paper describes a new approach towards simple representation of multi-dimensional affect data that facilitates the provision of emotions or affects with varying granularity. The analysis algorithm thus executed on the semantic representation generates temporally significant behavior patterns. The analysis of the semantic network generates temporally significant behavior patterns. The framework has been designed to be extensible over a wide variety of applications in cognitive computing.\",\"PeriodicalId\":139000,\"journal\":{\"name\":\"2017 1st International Conference on Intelligent Systems and Information Management (ICISIM)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 1st International Conference on Intelligent Systems and Information Management (ICISIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISIM.2017.8122182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 1st International Conference on Intelligent Systems and Information Management (ICISIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISIM.2017.8122182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了自然语言输入中情感识别的语义网络方法,重点研究了时空情感信息的表征。已经观察到,这种方法在分析影响信息方面表现更好,可以有效地用于人类认知行为的预后。本文的研究工作描述了一种简单表示多维情感数据的新方法,该方法有助于提供不同粒度的情感或情感。因此,在语义表示上执行的分析算法生成时间上重要的行为模式。对语义网络的分析产生了具有时间意义的行为模式。该框架被设计为可扩展到认知计算中的各种应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A semantic network approach to affect analysis: A case study on depression
This paper discusses the semantic network approach to identify affects in natural language input and focusses on representing spatio-temporal affect information. It has been observed that this approach performs better in analysis of affect information that can be effectively utilized for the prognosis of human cognitive behavior. The research work in this paper describes a new approach towards simple representation of multi-dimensional affect data that facilitates the provision of emotions or affects with varying granularity. The analysis algorithm thus executed on the semantic representation generates temporally significant behavior patterns. The analysis of the semantic network generates temporally significant behavior patterns. The framework has been designed to be extensible over a wide variety of applications in cognitive computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信