预测分位数回归的一种新的鲁棒推断

Z. Cai, Hai-qiang Chen, Xiaosai Liao
{"title":"预测分位数回归的一种新的鲁棒推断","authors":"Z. Cai, Hai-qiang Chen, Xiaosai Liao","doi":"10.2139/ssrn.3593817","DOIUrl":null,"url":null,"abstract":"For predictive quantile regressions with highly persistent regressors, a conventional test statistic suffers from a serious size distortion and its limiting distribution relies on the unknown persistence degree of predictors. This paper proposes a double-weighted approach to offer a robust inferential theory across all types of persistent regressors. We first estimate a quantile regression with an auxiliary regressor, which is generated as a weighted combination of an exogenous random walk process and a bounded transformation of the original regressor. With a similar spirit of rotation in factor analysis, one can then construct a weighted estimator using the estimated coefficients of the original predictor and the auxiliary regressor. Under some mild conditions, it shows that the self-normalized test statistic based on the weighted estimator converges to a standard normal distribution. Our new approach enjoys a nice property that it can reach the local power under the optimal rate T with nonstationary predictor and squared root of T for stationary predictor, respectively. More importantly, our approach can be easily used to characterize mixed persistence degrees in multiple regressions. Simulations and empirical studies are provided to demonstrate the effectiveness of the newly proposed approach. The heterogenous predictability of US stock returns at different quantile levels is reexamined.","PeriodicalId":239853,"journal":{"name":"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A New Robust Inference for Predictive Quantile Regression\",\"authors\":\"Z. Cai, Hai-qiang Chen, Xiaosai Liao\",\"doi\":\"10.2139/ssrn.3593817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For predictive quantile regressions with highly persistent regressors, a conventional test statistic suffers from a serious size distortion and its limiting distribution relies on the unknown persistence degree of predictors. This paper proposes a double-weighted approach to offer a robust inferential theory across all types of persistent regressors. We first estimate a quantile regression with an auxiliary regressor, which is generated as a weighted combination of an exogenous random walk process and a bounded transformation of the original regressor. With a similar spirit of rotation in factor analysis, one can then construct a weighted estimator using the estimated coefficients of the original predictor and the auxiliary regressor. Under some mild conditions, it shows that the self-normalized test statistic based on the weighted estimator converges to a standard normal distribution. Our new approach enjoys a nice property that it can reach the local power under the optimal rate T with nonstationary predictor and squared root of T for stationary predictor, respectively. More importantly, our approach can be easily used to characterize mixed persistence degrees in multiple regressions. Simulations and empirical studies are provided to demonstrate the effectiveness of the newly proposed approach. The heterogenous predictability of US stock returns at different quantile levels is reexamined.\",\"PeriodicalId\":239853,\"journal\":{\"name\":\"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3593817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3593817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

对于具有高度持续回归量的预测分位数回归,传统的检验统计量存在严重的大小失真,其极限分布依赖于未知的预测因子的持续程度。本文提出了一种双加权方法来提供一个跨越所有类型的持续回归的鲁棒推理理论。我们首先用辅助回归因子估计分位数回归,该辅助回归因子是由外生随机游走过程和原始回归因子的有界变换的加权组合产生的。与因子分析中类似的旋转精神,然后可以使用原始预测器和辅助回归器的估计系数构建加权估计器。在一些温和的条件下,证明了基于加权估计量的自归一化检验统计量收敛于标准正态分布。我们的新方法具有一个很好的性质,即在非平稳预测器和平稳预测器的根号T下分别可以达到最优速率T下的局部功率。更重要的是,我们的方法可以很容易地用于描述多重回归中的混合持久性程度。仿真和实证研究证明了该方法的有效性。美国股票回报在不同分位数水平上的异质性可预测性被重新审视。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Robust Inference for Predictive Quantile Regression
For predictive quantile regressions with highly persistent regressors, a conventional test statistic suffers from a serious size distortion and its limiting distribution relies on the unknown persistence degree of predictors. This paper proposes a double-weighted approach to offer a robust inferential theory across all types of persistent regressors. We first estimate a quantile regression with an auxiliary regressor, which is generated as a weighted combination of an exogenous random walk process and a bounded transformation of the original regressor. With a similar spirit of rotation in factor analysis, one can then construct a weighted estimator using the estimated coefficients of the original predictor and the auxiliary regressor. Under some mild conditions, it shows that the self-normalized test statistic based on the weighted estimator converges to a standard normal distribution. Our new approach enjoys a nice property that it can reach the local power under the optimal rate T with nonstationary predictor and squared root of T for stationary predictor, respectively. More importantly, our approach can be easily used to characterize mixed persistence degrees in multiple regressions. Simulations and empirical studies are provided to demonstrate the effectiveness of the newly proposed approach. The heterogenous predictability of US stock returns at different quantile levels is reexamined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信