基于ml和dl技术的糖尿病预测系统

N. Gupta, S. .., H. -, Surinder Kaur
{"title":"基于ml和dl技术的糖尿病预测系统","authors":"N. Gupta, S. .., H. -, Surinder Kaur","doi":"10.54216/fpa.010201","DOIUrl":null,"url":null,"abstract":"Diabetes nowadays is a familiar and long-term disease. If a prediction is made early better treatment can be provided. The data pre-processing approach is extremely useful in predicting the disease at an early stage. “A number of tools are used in determining significant characteristics such as selection, prediction, and association rule mining for diabetes. The principal component analysis method was used to select significant attributes. Our judgments denote a firm association of diabetes with body mass indicator (BMI) and with glucose degree. The study implemented logistic regression, decision trees, and ANN techniques to process Pima Indian diabetes datasets and predict whether people at risk have diabetes. It was analysed that random forest had the best accuracy of 80.52 %. Out of 500 negative records 268 positive records our model correctly analysed 403 records 216 records respectively.","PeriodicalId":269527,"journal":{"name":"Fusion: Practice and Applications","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diabetes prediction system using ml & dl techniques\",\"authors\":\"N. Gupta, S. .., H. -, Surinder Kaur\",\"doi\":\"10.54216/fpa.010201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetes nowadays is a familiar and long-term disease. If a prediction is made early better treatment can be provided. The data pre-processing approach is extremely useful in predicting the disease at an early stage. “A number of tools are used in determining significant characteristics such as selection, prediction, and association rule mining for diabetes. The principal component analysis method was used to select significant attributes. Our judgments denote a firm association of diabetes with body mass indicator (BMI) and with glucose degree. The study implemented logistic regression, decision trees, and ANN techniques to process Pima Indian diabetes datasets and predict whether people at risk have diabetes. It was analysed that random forest had the best accuracy of 80.52 %. Out of 500 negative records 268 positive records our model correctly analysed 403 records 216 records respectively.\",\"PeriodicalId\":269527,\"journal\":{\"name\":\"Fusion: Practice and Applications\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fusion: Practice and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54216/fpa.010201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion: Practice and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/fpa.010201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病是一种常见的长期疾病。如果能及早做出预测,就能提供更好的治疗。数据预处理方法在早期预测疾病方面非常有用。许多工具用于确定糖尿病的重要特征,如选择、预测和关联规则挖掘。采用主成分分析法选择显著属性。我们的判断表明糖尿病与身体质量指标(BMI)和葡萄糖度有密切的联系。该研究采用逻辑回归、决策树和人工神经网络技术来处理皮马印第安人糖尿病数据集,并预测有糖尿病风险的人是否患有糖尿病。经分析,随机森林的准确率最高,为80.52%。在500条负面记录268条正面记录中,我们的模型分别正确分析了403条记录216条记录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diabetes prediction system using ml & dl techniques
Diabetes nowadays is a familiar and long-term disease. If a prediction is made early better treatment can be provided. The data pre-processing approach is extremely useful in predicting the disease at an early stage. “A number of tools are used in determining significant characteristics such as selection, prediction, and association rule mining for diabetes. The principal component analysis method was used to select significant attributes. Our judgments denote a firm association of diabetes with body mass indicator (BMI) and with glucose degree. The study implemented logistic regression, decision trees, and ANN techniques to process Pima Indian diabetes datasets and predict whether people at risk have diabetes. It was analysed that random forest had the best accuracy of 80.52 %. Out of 500 negative records 268 positive records our model correctly analysed 403 records 216 records respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信