Dmytro Katrychuk, Henry K. Griffith, Oleg V. Komogortsev
{"title":"用于便携式VR头戴式设备的高能效、换挡稳健性眼动追踪传感器","authors":"Dmytro Katrychuk, Henry K. Griffith, Oleg V. Komogortsev","doi":"10.1145/3314111.3319821","DOIUrl":null,"url":null,"abstract":"Photosensor oculography (PSOG) is a promising solution for reducing the computational requirements of eye tracking sensors in wireless virtual and augmented reality platforms. This paper proposes a novel machine learning-based solution for addressing the known performance degradation of PSOG devices in the presence of sensor shifts. Namely, we introduce a convolutional neural network model capable of providing shift-robust end-to-end gaze estimates from the PSOG array output. Moreover, we propose a transfer-learning strategy for reducing model training time. Using a simulated workflow with improved realism, we show that the proposed convolutional model offers improved accuracy over a previously considered multilayer perceptron approach. In addition, we demonstrate that the transfer of initialization weights from pre-trained models can substantially reduce training time for new users. In the end, we provide the discussion regarding the design trade-offs between accuracy, training time, and power consumption among the considered models.","PeriodicalId":161901,"journal":{"name":"Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Power-efficient and shift-robust eye-tracking sensor for portable VR headsets\",\"authors\":\"Dmytro Katrychuk, Henry K. Griffith, Oleg V. Komogortsev\",\"doi\":\"10.1145/3314111.3319821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photosensor oculography (PSOG) is a promising solution for reducing the computational requirements of eye tracking sensors in wireless virtual and augmented reality platforms. This paper proposes a novel machine learning-based solution for addressing the known performance degradation of PSOG devices in the presence of sensor shifts. Namely, we introduce a convolutional neural network model capable of providing shift-robust end-to-end gaze estimates from the PSOG array output. Moreover, we propose a transfer-learning strategy for reducing model training time. Using a simulated workflow with improved realism, we show that the proposed convolutional model offers improved accuracy over a previously considered multilayer perceptron approach. In addition, we demonstrate that the transfer of initialization weights from pre-trained models can substantially reduce training time for new users. In the end, we provide the discussion regarding the design trade-offs between accuracy, training time, and power consumption among the considered models.\",\"PeriodicalId\":161901,\"journal\":{\"name\":\"Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3314111.3319821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3314111.3319821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Power-efficient and shift-robust eye-tracking sensor for portable VR headsets
Photosensor oculography (PSOG) is a promising solution for reducing the computational requirements of eye tracking sensors in wireless virtual and augmented reality platforms. This paper proposes a novel machine learning-based solution for addressing the known performance degradation of PSOG devices in the presence of sensor shifts. Namely, we introduce a convolutional neural network model capable of providing shift-robust end-to-end gaze estimates from the PSOG array output. Moreover, we propose a transfer-learning strategy for reducing model training time. Using a simulated workflow with improved realism, we show that the proposed convolutional model offers improved accuracy over a previously considered multilayer perceptron approach. In addition, we demonstrate that the transfer of initialization weights from pre-trained models can substantially reduce training time for new users. In the end, we provide the discussion regarding the design trade-offs between accuracy, training time, and power consumption among the considered models.