利用线性判别分析和遗传算法提高糖尿病分类性能

A. Alharan, Zahraa M. Algelal, Nabeel Salih Ali, Nora Al-Garaawi
{"title":"利用线性判别分析和遗传算法提高糖尿病分类性能","authors":"A. Alharan, Zahraa M. Algelal, Nabeel Salih Ali, Nora Al-Garaawi","doi":"10.1109/PICICT53635.2021.00019","DOIUrl":null,"url":null,"abstract":"In the modern-day, Diabetic disease is one of the most chronic and appalling diseases humanity faces. There are 463 million people had Diabetes worldwide, and it caused approximately 4.2 million deaths, according to the International Diabetes Federation (IDF) Diabetes Atlas Ninth edition 2019. Therefore diabetic patients need state-of-the-art healthcare against such diseases and propose early prediction to help decrease the risks related to such diseases. In this context, this research, a diabetes diagnosis system, has proposed to analyze two different diabetes datasets, namely PIMA Indian Diabetes and data of Dr. John Schorling. Linear Discriminant Analysis (LDA) and Genetic algorithm (GA) methods used for feature selection and four techniques implemented to evaluate the classification are Bagging algorithm, Random forest, Logistic Model Tree (LMT), and JRip algorithm. The results have shown that a random forest classifier using LDA and GA obtained better accuracy (90.89%) in DatasetI. At the same time, DatasetII is better than GA in Random forest, random forest-LDA, JRip-LDA classifiers (91.44%).","PeriodicalId":308869,"journal":{"name":"2021 Palestinian International Conference on Information and Communication Technology (PICICT)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Improving Classification Performance for Diabetes with Linear Discriminant Analysis and Genetic Algorithm\",\"authors\":\"A. Alharan, Zahraa M. Algelal, Nabeel Salih Ali, Nora Al-Garaawi\",\"doi\":\"10.1109/PICICT53635.2021.00019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the modern-day, Diabetic disease is one of the most chronic and appalling diseases humanity faces. There are 463 million people had Diabetes worldwide, and it caused approximately 4.2 million deaths, according to the International Diabetes Federation (IDF) Diabetes Atlas Ninth edition 2019. Therefore diabetic patients need state-of-the-art healthcare against such diseases and propose early prediction to help decrease the risks related to such diseases. In this context, this research, a diabetes diagnosis system, has proposed to analyze two different diabetes datasets, namely PIMA Indian Diabetes and data of Dr. John Schorling. Linear Discriminant Analysis (LDA) and Genetic algorithm (GA) methods used for feature selection and four techniques implemented to evaluate the classification are Bagging algorithm, Random forest, Logistic Model Tree (LMT), and JRip algorithm. The results have shown that a random forest classifier using LDA and GA obtained better accuracy (90.89%) in DatasetI. At the same time, DatasetII is better than GA in Random forest, random forest-LDA, JRip-LDA classifiers (91.44%).\",\"PeriodicalId\":308869,\"journal\":{\"name\":\"2021 Palestinian International Conference on Information and Communication Technology (PICICT)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Palestinian International Conference on Information and Communication Technology (PICICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PICICT53635.2021.00019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Palestinian International Conference on Information and Communication Technology (PICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PICICT53635.2021.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在现代,糖尿病是人类面临的最慢性和最可怕的疾病之一。根据国际糖尿病联合会(IDF) 2019年糖尿病地图集第九版,全球有4.63亿糖尿病患者,造成约420万人死亡。因此,糖尿病患者需要针对这些疾病的最先进的医疗保健,并提出早期预测,以帮助减少与这些疾病相关的风险。在此背景下,本研究作为一个糖尿病诊断系统,提出了分析两个不同的糖尿病数据集,即PIMA Indian diabetes和Dr. John Schorling的数据。特征选择采用线性判别分析(LDA)和遗传算法(GA)方法,分类评价采用Bagging算法、随机森林、Logistic模型树(LMT)和JRip算法。结果表明,采用LDA和GA的随机森林分类器在DatasetI中获得了更好的准确率(90.89%)。同时,在Random forest、Random forest- lda、JRip-LDA分类器上,DatasetII优于GA(91.44%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Classification Performance for Diabetes with Linear Discriminant Analysis and Genetic Algorithm
In the modern-day, Diabetic disease is one of the most chronic and appalling diseases humanity faces. There are 463 million people had Diabetes worldwide, and it caused approximately 4.2 million deaths, according to the International Diabetes Federation (IDF) Diabetes Atlas Ninth edition 2019. Therefore diabetic patients need state-of-the-art healthcare against such diseases and propose early prediction to help decrease the risks related to such diseases. In this context, this research, a diabetes diagnosis system, has proposed to analyze two different diabetes datasets, namely PIMA Indian Diabetes and data of Dr. John Schorling. Linear Discriminant Analysis (LDA) and Genetic algorithm (GA) methods used for feature selection and four techniques implemented to evaluate the classification are Bagging algorithm, Random forest, Logistic Model Tree (LMT), and JRip algorithm. The results have shown that a random forest classifier using LDA and GA obtained better accuracy (90.89%) in DatasetI. At the same time, DatasetII is better than GA in Random forest, random forest-LDA, JRip-LDA classifiers (91.44%).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信