协商行为人的元层次推理

A. Raja, V. Lesser
{"title":"协商行为人的元层次推理","authors":"A. Raja, V. Lesser","doi":"10.1109/IAT.2004.1342936","DOIUrl":null,"url":null,"abstract":"Deliberative agents operating in open environments must make complex real-time decisions on scheduling and coordination of domain activities. These decisions are made in the context of limited resources and uncertainty about the outcomes of activities. We describe a reinforcement learning based approach for efficient meta-level reasoning. Empirical results showing the effectiveness of meta-level reasoning in a complex domain are provided.","PeriodicalId":281008,"journal":{"name":"Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT 2004).","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Meta-level reasoning in deliberative agents\",\"authors\":\"A. Raja, V. Lesser\",\"doi\":\"10.1109/IAT.2004.1342936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deliberative agents operating in open environments must make complex real-time decisions on scheduling and coordination of domain activities. These decisions are made in the context of limited resources and uncertainty about the outcomes of activities. We describe a reinforcement learning based approach for efficient meta-level reasoning. Empirical results showing the effectiveness of meta-level reasoning in a complex domain are provided.\",\"PeriodicalId\":281008,\"journal\":{\"name\":\"Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT 2004).\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT 2004).\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAT.2004.1342936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT 2004).","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAT.2004.1342936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

在开放环境中工作的协商代理必须对领域活动的调度和协调做出复杂的实时决策。这些决定是在资源有限和活动结果不确定的情况下作出的。我们描述了一种基于强化学习的高效元级推理方法。实证结果显示了元级推理在复杂领域中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Meta-level reasoning in deliberative agents
Deliberative agents operating in open environments must make complex real-time decisions on scheduling and coordination of domain activities. These decisions are made in the context of limited resources and uncertainty about the outcomes of activities. We describe a reinforcement learning based approach for efficient meta-level reasoning. Empirical results showing the effectiveness of meta-level reasoning in a complex domain are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信