永久性房颤患者心率变异性的多尺度熵特征预测缺血性卒中风险分析

Ryo Matsuoka, K. Yoshino, E. Watanabe, K. Kiyono
{"title":"永久性房颤患者心率变异性的多尺度熵特征预测缺血性卒中风险分析","authors":"Ryo Matsuoka, K. Yoshino, E. Watanabe, K. Kiyono","doi":"10.1109/BIBM.2018.8621178","DOIUrl":null,"url":null,"abstract":"It has been reported that the complexity characteristics of heart rate variability (HRV) in patients with permanent atrial fibrillation (AFib) based on multiscale entropy (MSE) analysis are associated with ischemic stroke risk. However, the interpretation of HRV complexity is not clear and the mathematical and physical relationships between HRV and ischemic stroke have not been established. MSE is determined not only by the correlation characteristics but also by probability density function characteristics. The aim of this study was to clarify which characteristics were important for the association between MSE and ischemic stroke risk in patients with permanent AFib. We analyzed 24 hours of HRV data from 173 patients with permanent AFib. Results show that long-range correlations like 1/f fluctuations in a range greater than 90s were observed in HRV time series in patients with AFib, but that these values had no predictive power as an ischemic stroke risk factor. On the other hand, probability density functions of coarse-grained scales greater than 2s were significantly associated with ischemic stroke risk. These results suggest that probability density functions are a useful risk factor for improving ischemic stroke risk assessment. To investigate the probability density function characteristics more in detail, we analyzed the asymmetric non-Gaussian properties of the probability distribution of HRV data. Part of this study was published in the journal Entropy [1].","PeriodicalId":108667,"journal":{"name":"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of multiscale entropy characteristics of heart rate variability in patients with permanent atrial fibrillation for predicting ischemic stroke risk\",\"authors\":\"Ryo Matsuoka, K. Yoshino, E. Watanabe, K. Kiyono\",\"doi\":\"10.1109/BIBM.2018.8621178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has been reported that the complexity characteristics of heart rate variability (HRV) in patients with permanent atrial fibrillation (AFib) based on multiscale entropy (MSE) analysis are associated with ischemic stroke risk. However, the interpretation of HRV complexity is not clear and the mathematical and physical relationships between HRV and ischemic stroke have not been established. MSE is determined not only by the correlation characteristics but also by probability density function characteristics. The aim of this study was to clarify which characteristics were important for the association between MSE and ischemic stroke risk in patients with permanent AFib. We analyzed 24 hours of HRV data from 173 patients with permanent AFib. Results show that long-range correlations like 1/f fluctuations in a range greater than 90s were observed in HRV time series in patients with AFib, but that these values had no predictive power as an ischemic stroke risk factor. On the other hand, probability density functions of coarse-grained scales greater than 2s were significantly associated with ischemic stroke risk. These results suggest that probability density functions are a useful risk factor for improving ischemic stroke risk assessment. To investigate the probability density function characteristics more in detail, we analyzed the asymmetric non-Gaussian properties of the probability distribution of HRV data. Part of this study was published in the journal Entropy [1].\",\"PeriodicalId\":108667,\"journal\":{\"name\":\"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2018.8621178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2018.8621178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

有报道称,基于多尺度熵(MSE)分析的永久性心房颤动(AFib)患者心率变异性(HRV)的复杂性特征与缺血性卒中风险相关。然而,HRV复杂性的解释尚不清楚,HRV与缺血性脑卒中之间的数学和物理关系尚未建立。MSE不仅由相关特性决定,而且由概率密度函数特性决定。本研究的目的是阐明永久性房颤患者的MSE与缺血性卒中风险之间的关系中哪些特征是重要的。我们分析了173例永久性房颤患者24小时的HRV数据。结果表明,在房颤患者的HRV时间序列中观察到大于90的1/f波动等长期相关性,但这些值没有作为缺血性卒中危险因素的预测能力。另一方面,大于2s的粗粒度尺度概率密度函数与缺血性卒中风险显著相关。这些结果表明,概率密度函数是改善缺血性卒中风险评估的一个有用的危险因子。为了更详细地研究概率密度函数特征,我们分析了HRV数据概率分布的非对称非高斯性质。这项研究的部分内容发表在《熵》杂志上[1]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of multiscale entropy characteristics of heart rate variability in patients with permanent atrial fibrillation for predicting ischemic stroke risk
It has been reported that the complexity characteristics of heart rate variability (HRV) in patients with permanent atrial fibrillation (AFib) based on multiscale entropy (MSE) analysis are associated with ischemic stroke risk. However, the interpretation of HRV complexity is not clear and the mathematical and physical relationships between HRV and ischemic stroke have not been established. MSE is determined not only by the correlation characteristics but also by probability density function characteristics. The aim of this study was to clarify which characteristics were important for the association between MSE and ischemic stroke risk in patients with permanent AFib. We analyzed 24 hours of HRV data from 173 patients with permanent AFib. Results show that long-range correlations like 1/f fluctuations in a range greater than 90s were observed in HRV time series in patients with AFib, but that these values had no predictive power as an ischemic stroke risk factor. On the other hand, probability density functions of coarse-grained scales greater than 2s were significantly associated with ischemic stroke risk. These results suggest that probability density functions are a useful risk factor for improving ischemic stroke risk assessment. To investigate the probability density function characteristics more in detail, we analyzed the asymmetric non-Gaussian properties of the probability distribution of HRV data. Part of this study was published in the journal Entropy [1].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信