Hong Sun, Feiyang Hu, Zirui Jiang, Zhiwen Cui, Mahalingam Ravivarma, Hao Fan, Jiangxuan Song, D. Kong
{"title":"ph中性水相有机氧化还原液流电池非紫罗兰碱基阳极液的研究进展","authors":"Hong Sun, Feiyang Hu, Zirui Jiang, Zhiwen Cui, Mahalingam Ravivarma, Hao Fan, Jiangxuan Song, D. Kong","doi":"10.20517/cs.2023.07","DOIUrl":null,"url":null,"abstract":"Aqueous organic redox flow battery (AORFB) is regarded as the most promising next-generation technology for energy storage that stores electricity in redox-active organics lysed in mild salt-electrolytes. Composed of abundant elements such as C, H, O, and N, the adapted organics have a high degree of structural diversity and tunability, endowing it possible to modulate the physicochemical properties of water solubility, redox potential, and stability, and resulting in potential cost-effectiveness, ecological and environmental safety. Therefore, the designable organics consumedly expand the distance for exceeding battery behaviors in comparison with the inorganic counterparts. Herein, this study presents an overview of pH-neutral AORFBs that employ nonflammable water-soluble molecules with cheap inorganic salts as supporting electrolytes. Particular emphasis is given to the progress of molecular engineering design and synthesis of non-viologen-based organic anolytes and their respective AORFB performance. Additionally, some comments on present opportunities and perspectives of this ascendant domain are also demonstrated.","PeriodicalId":381136,"journal":{"name":"Chemical Synthesis","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements of non-viologen-based anolytes for pH-neutral aqueous organic redox flow batteries\",\"authors\":\"Hong Sun, Feiyang Hu, Zirui Jiang, Zhiwen Cui, Mahalingam Ravivarma, Hao Fan, Jiangxuan Song, D. Kong\",\"doi\":\"10.20517/cs.2023.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aqueous organic redox flow battery (AORFB) is regarded as the most promising next-generation technology for energy storage that stores electricity in redox-active organics lysed in mild salt-electrolytes. Composed of abundant elements such as C, H, O, and N, the adapted organics have a high degree of structural diversity and tunability, endowing it possible to modulate the physicochemical properties of water solubility, redox potential, and stability, and resulting in potential cost-effectiveness, ecological and environmental safety. Therefore, the designable organics consumedly expand the distance for exceeding battery behaviors in comparison with the inorganic counterparts. Herein, this study presents an overview of pH-neutral AORFBs that employ nonflammable water-soluble molecules with cheap inorganic salts as supporting electrolytes. Particular emphasis is given to the progress of molecular engineering design and synthesis of non-viologen-based organic anolytes and their respective AORFB performance. Additionally, some comments on present opportunities and perspectives of this ascendant domain are also demonstrated.\",\"PeriodicalId\":381136,\"journal\":{\"name\":\"Chemical Synthesis\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/cs.2023.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/cs.2023.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advancements of non-viologen-based anolytes for pH-neutral aqueous organic redox flow batteries
Aqueous organic redox flow battery (AORFB) is regarded as the most promising next-generation technology for energy storage that stores electricity in redox-active organics lysed in mild salt-electrolytes. Composed of abundant elements such as C, H, O, and N, the adapted organics have a high degree of structural diversity and tunability, endowing it possible to modulate the physicochemical properties of water solubility, redox potential, and stability, and resulting in potential cost-effectiveness, ecological and environmental safety. Therefore, the designable organics consumedly expand the distance for exceeding battery behaviors in comparison with the inorganic counterparts. Herein, this study presents an overview of pH-neutral AORFBs that employ nonflammable water-soluble molecules with cheap inorganic salts as supporting electrolytes. Particular emphasis is given to the progress of molecular engineering design and synthesis of non-viologen-based organic anolytes and their respective AORFB performance. Additionally, some comments on present opportunities and perspectives of this ascendant domain are also demonstrated.